Skip to main content

Ethnicity, Obesity, and Pregnancy Outcomes on Fetal Programming

  • Chapter
  • First Online:
Book cover Diet, Nutrition, and Fetal Programming

Abstract

A number of diseases over the life course such as cardiovascular disease, diabetes, asthma, cancer, allergies, and neurocognitive impairment occur at differing rates among people of different ethnicities. There is growing evidence to suggest that this is a consequence of fetal programming. Gestational diabetes mellitus (GDM) and hypertensive conditions in pregnancy such as gestational hypertension and preeclampsia both occur at elevated rates in women of certain ethnicities. Women of different ethnicities also experience higher rates of adverse pregnancy outcomes and interventions including preterm birth, low birth weight/small for gestational age, and cesarean birth. All of the outcomes listed above have been linked to fetal programming and may explain the increased rates of chronic diseases among people of different ethnicities. Compounding the issue further are the increasing rates of maternal obesity experienced among women in high-income nations. Emerging evidence has suggested that the associations between obesity, adverse pregnancy outcomes, and life course diseases may also be additive in some ethnicities. Further research is needed to uncover specific mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMI:

Body mass index

CVD:

Cardiovascular disease

DM:

Diabetes mellitus

GDM:

Gestational diabetes mellitus

HIC:

High-income country

NICU:

Neonatal intensive care unit

PE:

Preeclampsia

UK:

United Kingdom

References

  1. Fernando E, et al. Cardiovascular disease in South Asian migrants. Can J Cardiol. 2015;31(9):1139–50.

    Article  PubMed  Google Scholar 

  2. Meeks KA, et al. Disparities in type 2 diabetes prevalence among ethnic minority groups resident in Europe: a systematic review and meta-analysis. Intern Emerg Med. 2016;11(3):327–40.

    Article  PubMed  Google Scholar 

  3. Gasevic D, Ross ES, Lear SA. Ethnic differences in cardiovascular disease risk factors: a systematic review of North American evidence. Can J Cardiol. 2015;31(9):1169–79.

    Article  PubMed  Google Scholar 

  4. Hicks LS, et al. Determinants of JNC VI guideline adherence, intensity of drug therapy, and blood pressure control by race and ethnicity. Hypertension. 2004;44(4):429–34.

    Article  CAS  PubMed  Google Scholar 

  5. Kim BJ, Kim JS. Ischemic stroke subtype classification: an Asian viewpoint. J Stroke. 2014;16:1.

    Article  CAS  Google Scholar 

  6. Akinbami LJ. Status of childhood asthma in the United States 1980–2007. Pediatrics. 2009;123(Suppl 3):S131–45.

    Article  PubMed  Google Scholar 

  7. Ospina MB, et al. Prevalence of asthma and chronic obstructive pulmonary disease in aboriginal and non-aboriginal populations: a systematic review and meta-analysis of epidemiological studies. Can Respir J. 2012;19(6):355–60.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 2016;1(8489):1077–81.

    Google Scholar 

  9. Gillman MW. Developmental origins of health and disease. N Engl J Med. 2005;353(11):1984–50.

    Google Scholar 

  10. Burdge GC, et al. Epigenetic regulation of transcription: a mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life? Br J Nutr. 2007;97(6):1036–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grandjean P, et al. Life-long implications of developmental exposure to environmental stressors: new perspectives. Endocrinology. 2015;156(10):3408–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hanson M, et al. Developmental plasticity and developmental origins of non-communicable disease: theoretical considerations and epigenetic mechanisms. Prog Biophys Mol Biol. 2011;106(1):272–80.

    Article  PubMed  Google Scholar 

  13. Entringer S, Buss C, Wadhwa PD. Prenatal stress, telomere biology, and fetal programming of health and disease risk. Sci Signal. 2012;5(248):pt12.

    Article  PubMed  Google Scholar 

  14. Retnakaran R, et al. Ethnicity modifies the effect of obesity on insulin resistance in pregnancy: a comparison of Asian, South Asian, and Caucasian women. J Clin Endocrinol Metab. 2006;91(1):93–7.

    Article  CAS  PubMed  Google Scholar 

  15. Jenum AK, et al. Impact of ethnicity on gestational diabetes identified with the WHO and the modified International Association of Diabetes and Pregnancy Study Groups criteria: a population-based cohort study. Eur J Endocrinol Eur Fed Endocr Soc. 2012;166(2):317–24.

    Article  CAS  Google Scholar 

  16. Dornhorst A, et al. High prevalence of gestational diabetes in women from ethnic minority groups. Diabet Med. 1992;9(9):820–5.

    Article  CAS  PubMed  Google Scholar 

  17. Schwartz N, Nachum Z, Green MS. The prevalence of gestational diabetes mellitus recurrence – effect of ethnicity and parity: a metaanalysis. Am J Obstet Gynecol. 2015;213(3):310–7.

    Article  PubMed  Google Scholar 

  18. Kjos SL, Buchanan TA. Gestational diabetes mellitus. N Engl J Med. 1999;341:1749–56.

    Article  CAS  PubMed  Google Scholar 

  19. American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care. 2015;38:S8–16.

    Article  Google Scholar 

  20. Brett KE, et al. Maternal-fetal nutrient transport in pregnancy pathologies: the role of the placenta. Int J Mol Sci. 2014;15(9):16153–85.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kelstrup L, et al. Insulin resistance and impaired pancreatic β-cell function in adult offspring of women with diabetes in pregnancy. J Clin Endocrinol Metab. 2013;98(9):3793–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Clausen TD, et al. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: the role of intrauterine hyperglycemia. Diabetes Care. 2008;31(2):340–6.

    Article  PubMed  Google Scholar 

  23. Boney CM, et al. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes. Pediatrics. 2005;115:290–6.

    Article  Google Scholar 

  24. Tam WH, et al. Glucose intolerance and cardiometabolic risk in children exposed to maternal gestational diabetes mellitus in utero. Pediatrics. 2008;122(6):1229–34.

    Article  PubMed  Google Scholar 

  25. Amri K, et al. Adverse effects of hyperglycemia on kidney development in rats: in vivo and in vitro studies. Diabetes. 1999;48(11):2240–5.

    Article  CAS  PubMed  Google Scholar 

  26. Nehiri T, et al. Exposure to maternal diabetes induces salt-sensitive hypertension and impairs renal function in adult rat offspring. Diabetes. 2008;57(8):2167–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Silva JK, et al. Ethnic differences in perinatal outcome of gestational diabetes mellitus. Diabetes Care. 2006;29(9):2058–63.

    Article  PubMed  Google Scholar 

  28. Cripe SM, et al. Perinatal outcomes of Southeast Asians with pregnancies complicated by gestational diabetes mellitus or preeclampsia. J Immigr Minor Health. 2012;14(5):747–53.

    Article  PubMed  Google Scholar 

  29. Urquia ML, et al. Disparities in pre-eclampsia and eclampsia among immigrant women giving birth in six industrialised countries. BJOG. 2014;121(12):1492–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dahlen HG, et al. Rates of obstetric intervention during birth and selected maternal and perinatal outcomes for low risk women born in Australia compared to those born overseas. BMC Pregnancy Childbirth. 2013;13:100.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fang J, Madhavan S, Alderman MH. The influence of maternal hypertension on low birth weight: differences among ethnic populations. Ethn Dis. 1999;9(3):369–76.

    CAS  PubMed  Google Scholar 

  32. Redman CW, Sargent IL. Immunology of pre-eclampsia. Am J Reprod Immunol. 2010;63:534–54.

    Article  CAS  PubMed  Google Scholar 

  33. Aufdenblatten M, et al. Prematurity is related to high placental cortisol in preeclampsia. Pediatr Res. 2009;65:198–202.

    Article  CAS  PubMed  Google Scholar 

  34. Newnham JP, et al. Nutrition and the early origins of adult disease. Asia Pac J Clin Nutr. 2002;11(Suppl 3):S537–42.

    Article  PubMed  Google Scholar 

  35. Davis EF, et al. Cardiovascular risk factors in children and young adults born to preeclamptic pregnancies: a systematic review. Pediatrics. 2012;129(6):e1552–61.

    Article  PubMed  Google Scholar 

  36. Svensson J, et al. Early childhood risk factors associated with type 1 diabetes – is gender important? Eur J Epidemiol. 2005;20(5):429–34.

    Article  PubMed  Google Scholar 

  37. Tuovinen S, et al. Maternal hypertensive pregnancy disorders and cognitive functioning of the offspring: a systematic review. J Am Soc Hypertens. 2014;8(11):832–47.

    Article  PubMed  Google Scholar 

  38. Mamun AA, et al. Does hypertensive disorder of pregnancy predict offspring blood pressure at 21 years? Evidence from a birth cohort study. J Hum Hypertens. 2012;26(5):288–94.

    Article  CAS  PubMed  Google Scholar 

  39. Kajantie E, et al. Pre-eclampsia is associated with increased risk of stroke in the adult offspring: the Helsinki birth cohort study. Stroke. 2009;40(4):1176–80.

    Article  PubMed  Google Scholar 

  40. Henry EB, Patterson CC, Cardwell CR. A meta-analysis of the association between pre-eclampsia and childhood-onset Type 1 diabetes mellitus. Diabet Med. 2011;28(8):900–5.

    Article  CAS  PubMed  Google Scholar 

  41. Barker DJ, Edwards JH. Obstetric complications and school performance. Br Med J. 1967;3:695–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu CS, et al. Health of children born to mothers who had preeclampsia: a population-based cohort study. Am J Obstet Gynecol. 2009;201(3):269.

    Article  PubMed  Google Scholar 

  43. Xue F, Michels KB. Intrauterine factors and risk of breast cancer: a systematic review and meta-analysis of current evidence. Lancet Oncol. 2007;8:1088–100.

    Article  PubMed  Google Scholar 

  44. Zeisler H, et al. Concentrations of estrogens in patients with preeclampsia. Wien Klin Wochenschr. 2002;114:446–58.

    Google Scholar 

  45. Park AL, Urquia ML, Ray JG. Risk of preterm birth according to maternal and paternal country of birth: a population-based study. J Obstet Gynaecol Can. 2015;37(12):1053–62.

    Article  PubMed  Google Scholar 

  46. Leon DA, Moser KA. Low birth weight persists in South Asian babies born in England and Wales regardless of maternal country of birth. Slow pace of acculturation, physiological constraint or both? Analysis of routine data. J Epidemiol Community Health. 2012;66(6):544–51.

    Article  PubMed  Google Scholar 

  47. Oftedal AM, et al. Socio-economic risk factors for preterm birth in Norway 1999–2009. Scand J Public Health. 2016;44:587–92. Epub ahead of print.

    Article  PubMed  Google Scholar 

  48. Servan-Mori E, et al. Timeliness, frequency and content of antenatal care: which is most important to reducing indigenous disparities in birth weight in Mexico? Health Policy Plan. 2016;3(4):444–53.

    Article  Google Scholar 

  49. Chang AL, et al. Maternal risk factors and perinatal outcomes among pacific islander groups in Hawaii: a retrospective cohort study using statewide hospital data. BMC Pregnancy Childbirth. 2015;15:239.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kildea S, et al. The maternal and neonatal outcomes for an urban indigenous population compared with their non-indigenous counterparts and a trend analysis over four triennia. BMC Pregnancy Childbirth. 2013;13:167.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Alexander BT, Dasinger JH, Intapad S. Fetal programming and cardiovascular pathology. Compr Physiol. 2015;5(2):997–1025.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mathai S, et al. Insulin sensitivity and β-cell function in adults born preterm and their children. Diabetes. 2012;61(10):2479–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zerbeto AB, Cortelo FM, Filho ÉB C. Association between gestational age and birth weight on the language development of Brazilian children: a systematic review. J Pediatr. 2015;91:4.

    Article  Google Scholar 

  54. Johnson CC, et al. Birth weight and asthma incidence by asthma phenotype pattern in a racially diverse cohort followed through adolescence. J Asthma. 2015;52(10):1006–12.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hussain SM, et al. Association of low birth weight and preterm birth with the incidence of knee and hip arthroplasty for osteoarthritis. Arthritis Care Res. 2015;67(4):502–8.

    Article  Google Scholar 

  56. El Hajj N, et al. Epigenetics and life-long consequences of an adverse nutritional and diabetic intrauterine environment. Reproduction (Cambridge, England). 2014;148(6):R111–20.

    Article  Google Scholar 

  57. Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health. Early Hum Dev. 2006;82(8):485–91.

    Article  PubMed  Google Scholar 

  58. Yajnik CS. Transmission of obesity-adiposity and related disorders from the mother to the baby. Ann Nutr Metab. 2014;64(Suppl 1):8–17.

    Article  CAS  PubMed  Google Scholar 

  59. Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35(7):595–601.

    Article  CAS  PubMed  Google Scholar 

  60. Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br Med Bull. 2001;60:5–20.

    Article  CAS  PubMed  Google Scholar 

  61. de Jong F, et al. Systematic review and meta-analysis of preterm birth and later systolic blood pressure. Hypertension. 2012;59(2):226–34.

    Article  PubMed  Google Scholar 

  62. Smith CM, et al. Very low birth weight survivors have reduced peak bone mass and reduced insulin sensitivity. Clin Endocrinol. 2011;75(4):443–9.

    Article  CAS  Google Scholar 

  63. Yajnik CS, Deshmukh US. Maternal nutrition, intrauterine programming and consequential risks in the offspring. Rev Endocr Metab Disord. 2008;9(3):203–11.

    Article  CAS  PubMed  Google Scholar 

  64. Yajnik CS, et al. Neonatal anthropometry: the thin-fat Indian baby. The Pune Maternal Nutrition Study. Int J Obes Relat Metab Disord: J Int Assoc Stud Obes. 2003;27(2):173–80.

    Article  CAS  Google Scholar 

  65. Been JV, et al. Preterm birth and childhood wheezing disorders: a systematic review and meta-analysis. PLoS Med. 2014;11:1.

    Article  Google Scholar 

  66. Barker DJ, et al. Foetal and childhood growth and asthma in adult life. Acta Paediatr. 2013;102(7):732–8.

    Article  PubMed  Google Scholar 

  67. Duijts L, et al. Early origins of chronic obstructive lung diseases across the life course. Eur J Epidemiol. 2014;29(12):871–85.

    Article  PubMed  Google Scholar 

  68. Jaakkola JJ, et al. Preterm delivery and asthma: a systematic review and meta-analysis. Allergy Clin Immunol. 2006;118(4):823–30.

    Article  Google Scholar 

  69. Simić S, et al. Does the gestation age of newborn babies influence the ultrasonic assessment of hip condition? Srp Arh Celok Lek. 2009;137(7):402–8.

    PubMed  Google Scholar 

  70. Meas T. Fetal origins of insulin resistance and the metabolic syndrome: a key role for adipose tissue? Diabete Metab. 2010;36(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  71. Xian L, et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med. 2012;18(7):1095–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Anderson P, Doyle LW. Neurobehavioral outcomes of school-age children born extremely low birth weight or very preterm in the 1990s. JAMA. 2003;289(24):3264–72.

    Article  PubMed  Google Scholar 

  73. Bhutta AT, et al. Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. JAMA. 2002;288(6):728–37.

    Article  PubMed  Google Scholar 

  74. Chan E, et al. Long-term cognitive and school outcomes of late-preterm and early-term births: a systematic review. Child Care Health Dev. 2016;42(3):297–312.

    Article  CAS  PubMed  Google Scholar 

  75. Duncan AF, et al. Effect of ethnicity and race on cognitive and language testing at age 18–22 months in extremely preterm infants. J Pediatr. 2012;160(6):966–71.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bickle Graz M, Tolsa JF, Fischer Fumeaux CJ. Being small for gestational age: does it matter for the neurodevelopment of premature infants? A Cohort Study. PLoS One. 2015;10:5.

    Article  Google Scholar 

  77. Gascoin G, Flamant C. Long-term outcome in context of intra uterine growth restriction and/or small for gestational age newborns. J Gynecol Obstet Biol Reprod (Paris). 2013;42(8):911–20.

    Article  CAS  Google Scholar 

  78. Lawlor DA, et al. Early life predictors of childhood intelligence: findings from the Mater-University study of pregnancy and its outcomes. Paediatr Perinat Epidemiol. 2006;20(2):148–62.

    Article  PubMed  Google Scholar 

  79. Edmonds JK, et al. Racial and ethnic differences in primary, unscheduled cesarean deliveries among low-risk primiparous women at an academic medical center: a retrospective cohort study. BMC Pregnancy Childbirth. 2013;13:168.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Janevic T, et al. Disparities in cesarean delivery by ethnicity and nativity in New York City. Matern Child Health J. 2014;18(1):250–7.

    Article  CAS  PubMed  Google Scholar 

  81. Ibison JM. Ethnicity and mode of delivery in ‘low-risk’ first-time mothers, East London, 1988–1997. Eur J Obstet Gynecol Reprod Biol. 2005;118(2):199–205.

    Article  PubMed  Google Scholar 

  82. Anderson NH, et al. Ethnicity and risk of caesarean section in a term, nulliparous New Zealand obstetric cohort. Aust N Z J Obstet Gynaecol. 2013;53(3):258–64.

    Article  PubMed  Google Scholar 

  83. Belihu FB, Small R, Davey MA. Variations in first-time caesarean birth between Eastern African immigrants and Australian-born women in public care: a population-based investigation in Victoria. BMC Pregnancy Childbirth. 2016;16:86. doi:10.1186/s12884-016-0886-z.

  84. Kolokotroni O, et al. Asthma and atopy in children born by caesarean section: effect modification by family history of allergies – a population based cross-sectional study. BMC Pediatr. 2012;12:179.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Cardwell CR, et al. Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational studies. Diabetologia. 2008;51(5):726–35.

    Article  CAS  PubMed  Google Scholar 

  86. Decker E, et al. Cesarean delivery is associated with celiac disease but not inflammatory bowel disease in children. Pediatrics. 2010;125(6):1433–40.

    Article  Google Scholar 

  87. Blustein J, et al. Association of caesarean delivery with child adiposity from age 6 weeks to 15 years. Int J Obes. 2013;37(7):900–6.

    Article  CAS  Google Scholar 

  88. Cnattingius S, et al. Prenatal and neonatal risk factors for childhood myeloid leukemia. Cancer Epidemiol Biomark Prev. 1995;4(5):441–5.

    CAS  Google Scholar 

  89. Cook MB, et al. Perinatal factors and the risk of testicular germ cell tumors. Int J Cancer. 2008;122(11):2600–6.

    Article  CAS  PubMed  Google Scholar 

  90. Marchi J, et al. Risks associated with obesity in pregnancy, for the mother and baby: a systematic review of reviews. Obes Rev. 2015;16:621–38.

    Article  CAS  PubMed  Google Scholar 

  91. Shaw J. Epidemiology of childhood type 2 diabetes and obesity. Pediatr Diabetes. 2007;8(Suppl 9):7–15.

    Article  PubMed  Google Scholar 

  92. Fall C. Evidence for the intra-uterine programming of adiposity in later life. Ann Hum Biol. 2011;38(4):410–28.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Rizzo GS, Sen S. Maternal obesity and immune dysregulation in mother and infant: a review of the evidence. Paediatr Respir Rev. 2015;16(4):251–7.

    PubMed  Google Scholar 

  94. Van Lieshout RJ. Role of maternal adiposity prior to and during pregnancy in cognitive and psychiatric problems in offspring. Nutr Rev. 2013;71(Suppl 1):S95–101.

    Article  PubMed  Google Scholar 

  95. Penn N, et al. Ethnic variation in stillbirth risk and the role of maternal obesity: analysis of routine data from the London maternity unit. BMC Pregnancy Childbirth. 2014;14:404.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Makgoba M, Savvidou MD, Steer PJ. An analysis of the interrelationship between maternal age, body mass index and racial origin in the development of gestational diabetes mellitus. BJOG. 2011;119:276–82.

    Article  PubMed  Google Scholar 

  97. Oteng-Ntim E, et al. Impact of obesity on pregnancy outcome in different ethnic groups: calculating population attributable fractions. PLoS One. 2013;8:1.

    Article  Google Scholar 

  98. Ramos GA, Caughey AB. The interrelationship between ethnicity and obesity on obstetric outcomes. Am J Obstet Gynecol. 2005;193(3, Supplement):1089–93.

    Article  PubMed  Google Scholar 

  99. Consultation, We. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363:157–63.

    Article  Google Scholar 

  100. Reinold C, Dalenius K, Brindley P, Smith B, Grummer-Strawn L. Pregnancy Nutrition Surveillance 2009 Report. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention; 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miranda Davies-Tuck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Davies-Tuck, M., Davey, MA., Fernandez, J.A., Reddy, M., Caulfield, M.G., Wallace, E. (2017). Ethnicity, Obesity, and Pregnancy Outcomes on Fetal Programming. In: Rajendram, R., Preedy, V., Patel, V. (eds) Diet, Nutrition, and Fetal Programming. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60289-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60289-9_15

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-60287-5

  • Online ISBN: 978-3-319-60289-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics