Skip to main content

Microbubbles: Properties, Mechanisms of Their Generation

  • Chapter
  • First Online:
Particles in Flows

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

  • 1588 Accesses

Abstract

This chapter discusses microbubbles—small gas bubbles in liquid medium of diameter less than 1 mm. Although they were known to offer a number of advantages, until recently they could be generated only by methods energetically inefficient. New horizons became open by the discovery of generation by aerators provided with an oscillator in their gas supply. Chapter provides in particular an information about no-moving-part fluidic oscillators, recently already almost forgotten but now demonstrated to offer benefits like low manufacturing cost, reliability, long life and absence of maintenance. The empirical fact that small bubbles cannot be obtained simply by making small passages in the aerator is here explained by conjunction of several microbubbles. Because the velocity of bubble motion decreases with decreasing size, small microbubbles tend to dwell near the aerator exits. They then coalesce there into a much larger single bubble (the effect promoted by the latter possessing lower surface energy). The fact that the oscillator prevents this conjunction and thus keeps the microbubbles small has been explained by high-speed camera images which show the effect of oscillatory motions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Aissa, M. Abdelouahab, A. Noureddine, M. Elganaoui, B. Pateyron, Ranz and Marshall correlations limits on heat flow between a sphere and its surrounding gas at high temperature. Therm. Sci. 19(6), 1521–1528 (2015)

    Article  Google Scholar 

  2. A. Allouch, K. Bournine, A. Monmayrant, O. Gauthier-Lafaye, S. Geoffroy, A.-M. Gué, P. Joseph, Microbubbles for optofluidics: controlled defects in bubble crystals. Microfluid. Nanofluid. 17(3), 549–560 (2014)

    Article  Google Scholar 

  3. V.G. Bogdevich, A.R. Evseev, A.G. Malyuga, G.S. Migirenko, Gas saturation effect on near-wall turbulence characteristics, in Proceedings of 2nd International BHRA Fluid Engineering Drag Reduction Conference (1977), pp. 25–37

    Google Scholar 

  4. C. Cerretelli, K. Kirtley, Boundary layer separation control with fluidic oscillators. J. Turbomach. 131(4), 041001 (2009)

    Google Scholar 

  5. H. Coanda, Device for deflecting a stream of elastic fluid projected into an elastic fluid. US Patent, No. 2052869. Filed in September 1936

    Google Scholar 

  6. A. Fick, Über diffusion. Ann. Phys. 170(1), 59–86 (1855)

    Article  Google Scholar 

  7. K. Foster, G.A. Parker, Fluidics: Components and Circuits (Wiley, New York, 1970)

    Google Scholar 

  8. W.L. Haberman, R.K. Morton, An experimental investigation of the drag and shape of air bubbles rising in various liquids. Technical Report 802, NS 715-102, Navy Department, The David W. Taylor Model Basin Washington 7, DC, September 1953

    Google Scholar 

  9. M. Hashimoto, B. Mayers, P. Garstecki, G.M. Whitesides, Flowing lattices of bubbles as tunable, self-assembled diffraction gratings. Small 2(11), 1292–1298 (2006)

    Article  Google Scholar 

  10. S. Honda, H. Yamasaki, A new hydrodynamic oscillator type flowmeter, in Proceedings of the International Symposium on Fluid Control and Measurement, Tokyo 1985 (Pergamon, Oxford, 1986), pp. 623–628

    Google Scholar 

  11. T. Kanagawa, Focused ultrasound propagation in water containing many therapeutical microbubbles, in Proceedings of FLUCOME 2013, 12th International Conference on Fluid Control, Measurements, and Visualization, Nara (2013). Paper OS6-04-4

    Google Scholar 

  12. M. Koklu, Fluidic oscillator having decoupled frequency and amplitude control. US Patent, No. 9339825. Filed in March 2013

    Google Scholar 

  13. K. Kooiman, M. Foppen-Harteveld, A.F.W. van der Steen, N. de Jonga, Sonoporation of endothelial cells by vibrating targeted microbubbles. J. Control. Release 154(1), 35–41 (2011)

    Article  Google Scholar 

  14. L.A. Kuznetsova, W.T. Coakley, Applications of ultrasound streaming and radiation force in biosensors. Biosens. Bioelectron. 22(8), 1567–1577 (2007)

    Article  Google Scholar 

  15. R. Latorre, A. Miller, R. Philips, Micro-bubble resistance reduction for high speed craft. Trans. Nav. Archit. Mar. Eng. 110, 259–277 (2002)

    Google Scholar 

  16. J.H. Lee, K.H. Lee, J.M. Won, K. Rhee, S.K. Chung, Mobile oscillating bubble actuated by AC-electrowetting-on-dielectric (EWOD) for microfluidic mixing enhancement. Sensors Actuators A Phys. 182, 153–162 (2012)

    Article  Google Scholar 

  17. G. Liger-Belair, R. Marchal, B. Robillard, T. Dambrouck, A. Maujean, M. Vignes-Adler, P. Jeandet, On the velocity of expanding spherical gas bubbles rising in line in supersaturated hydroalcoholic solutions: application to bubble trains in carbonated beverages. Langmuir 16(4), 1889–1895 (2000)

    Article  Google Scholar 

  18. N.K. Madavan, S. Deutsch, C.L. Merkle, Reduction of turbulent skin friction by microbubbles. Phys. Fluids 27(2), 356–363 (1984)

    Article  Google Scholar 

  19. E. Markland, G.M. Tofield, G.P. Lucas, H.S. Kalsi, Fluidic oscillator flowmeters. US Patent, No. 4838091. Filed in June 1986

    Google Scholar 

  20. M.E. McCormick, R. Bhattacharyya, Drag reduction of a submersible hull by electrolysis. Nav. Eng. J. 85(2), 11–16 (1973)

    Article  Google Scholar 

  21. Y. Moriguchi, H. Kato, Influence of microbubble diameter and distribution on frictional resistance reduction. J. Mar. Sci. Technol. 7(2), 79–85 (2002)

    Article  Google Scholar 

  22. J.S. Oh, Y.S. Kwon, K.H. Lee, W. Jeong, S.K. Chung, K. Rhee, Drug perfusion enhancement in tissue model by steady streaming induced by oscillating microbubbles. Comput. Biol. Med. 44, 37–43 (2014)

    Article  Google Scholar 

  23. T. Okawa, T. Tanaka, I. Kataoka, M. Mori, Temperature effect on single bubble rise characteristics in stagnant distilled water. Int. J. Heat Mass Transf. 46(5), 903–913 (2003)

    Article  Google Scholar 

  24. S. Okazaki, The velocity of ascending air bubbles in aqueous solutions of a surface active substance and the life of the bubble on the same solution. Bull. Chem. Soc. Jpn. 37(2), 144–150 (1964)

    Article  Google Scholar 

  25. M.J. Pang, J.J. Wei, B. Yu, Numerical study on modulation of microbubbles on turbulence frictional drag in a horizontal channel. Ocean Eng. 81, 58–68 (2014)

    Article  Google Scholar 

  26. T. Prevenslik, Stability of nanobubbles by quantum mechanics, in Proceedings of Topical problems of Fluid Mechanics 2014 (Institute of Thermomechanics, Czech Academy of Sciences, 2014), pp. 113–116

    Google Scholar 

  27. W.E. Ranz, W.R. Marshall, Evaporation from drops, part 1. Chem. Eng. Prog. 48, 141–146 (1952)

    Google Scholar 

  28. L. Rayleigh, On the pressure developed in a liquid during the collapse of a spherical cavity. Philos. Mag. Ser. 6 34(200), 94–98 (1917)

    Google Scholar 

  29. T. Ries, F. Mohr, J. Baumann, M. Rose, U. Rist, I. Raab, S. Staudacher, LP turbine laminar separation with actuated transition: DNS, experiment and fluidic oscillator CFD, in ASME Turbo Expo 2009: Power for Land, Sea, and Air. Volume 7: Turbomachinery, Parts A and B, Orlando, FL (The American Society of Mechanical Engineers, New York, 2009), pp. 917–927. ASME Paper No. GT2009-59600

    Google Scholar 

  30. E. Schmidt, Einführung in die Technische Thermodynamik und in die Grundlagen der chemischen Thermodynamik, 10th edn. (Springer, Berlin, 1963)

    Book  Google Scholar 

  31. M.M. Shams, M. Dong, N. Mahinpey, Friction factor of microbubbles in capillary tubes at low Reynolds numbers. Chem. Eng. Sci., 112, 72–78 (2014)

    Article  Google Scholar 

  32. T.K. Sherwood, R.L. Pigford, C.R. Wilke, Mass Transfer (McGraw-Hill, New York, 1975)

    Google Scholar 

  33. R.R. Sun, M.L. Noble, S.S. Sun, S. Song, C.H. Miao, Development of therapeutic microbubbles for enhancing ultrasound-mediated gene delivery. J. Control. Release 182, 111–120 (2014)

    Article  Google Scholar 

  34. M.A.R. Talaia, Terminal velocity of a bubble rise in a liquid column. Int. J. Math. Comput. Phys. Electr. Comput. Eng. 1(4), 220–224 (2007)

    Google Scholar 

  35. K. Terasaka, A. Hirabayashi, T. Nishino, S. Fujioka, D. Kobayashi, Development of microbubble aerator for waste water treatment using aerobic activated sludge. Chem. Eng. Sci. 66(14), 3172–3179 (2011)

    Article  Google Scholar 

  36. V. Tesař, Fluidics applied to generation of small aeration bubbles, in Proceedings of FLUCOME 2007. 9th International Conference on Fluid Control, Measurements, and Visualization, Tallahassee, FL (2007)

    Google Scholar 

  37. V. Tesař, Pressure Driven Microfluidics (Artech House, Norwood, 2007)

    Google Scholar 

  38. V. Tesař, No-moving-part valve for automatic flow switching. Chem. Eng. J. 162(1), 278–295 (2010)

    Article  Google Scholar 

  39. V. Tesař, Mechanisms of fluidic microbubble generation Part I: growth by multiple conjunctions. Chem. Eng. Sci. 116, 843–848 (2014)

    Article  Google Scholar 

  40. V. Tesař, Mechanisms of fluidic microbubble generation Part II: suppressing the conjunctions. Chem. Eng. Sci. 116, 849–856 (2014)

    Article  Google Scholar 

  41. V. Tesař. Microbubble generator excited by fluidic oscillator’s third harmonic frequency. Chem. Eng. Res. Design 92(9), 1603–1615 (2014)

    Article  Google Scholar 

  42. V. Tesař, Shape oscillation of microbubbles. Chem. Eng. J. 235, 368–378 (2014)

    Article  Google Scholar 

  43. V. Tesař, Fluidic oscillator. Czech Patent No. CZ 306604 (2016). Filed on December 15, 2014

    Google Scholar 

  44. V. Tesař, C.-H. Hung, W.B. Zimmerman, No-moving-part hybrid-synthetic jet actuator. Sensors Actuators A Phys. 125(2), 159–169 (2006)

    Article  Google Scholar 

  45. V. Tesař, S. Zhong, F. Rasheed, New fluidic oscillator concept for flow separation control. AIAA J. 51(2), 397–405 (2013)

    Article  Google Scholar 

  46. C. Tremblay-Darveau, R. Williams, P.N. Burns, Measuring absolute blood pressure using microbubbles. Ultrasound Med. Biol. 40(4), 775–787 (2014)

    Article  Google Scholar 

  47. H. Tsuge, P. Li, N. Shimatani, Y. Shimamura, H. Nakata, M. Ohira, Fundamental study on disinfection effect of microbubbles. Kagaku Kogaku Ronbunshu 35(5), 548–552 (2009)

    Article  Google Scholar 

  48. C. Wang, S.V. Jalikop, S. Hilgenfeldt, Efficient manipulation of microparticles in bubble streaming flows. Biomicrofluidics 6(1), 012801 (2012)

    Google Scholar 

  49. R.W. Warren, Fluid oscillator. US Patent, No. 3016066. Filed in January 1960

    Google Scholar 

  50. R.W. Warren, Negative feedback oscillator. US Patent, No. 3158166. Filed in August 1962

    Google Scholar 

  51. K. Watanabe, Washing effect of microbubbles, in Proceedings of FLUCOME 2013. 12th International Conference on Fluid Control, Measurements, and Visualization, Nara (2013). Paper OS1-01-1

    Google Scholar 

  52. O. Watanabe, A. Masuko, Y. Shirose, Measurements of drag reduction by microbubbles using very long ship models. Nippon Zosen Gakkai Ronbunshu (J. Soc. Nav. Archit. Jpn) 183, 53–63 (1998)

    Article  Google Scholar 

  53. Y. Watanabe, A. Aoi, S. Horie, N. Tomita, S. Mori, H. Morikawa, Y. Matsumura, G. Vassaux, T. Kodama, Low-intensity ultrasound and microbubbles enhance the antitumor effect of cisplatin. Cancer Sci. 99(12), 2525–2531 (2008)

    Article  Google Scholar 

  54. M. Weber, Die Grundlagen der Ähnlichkeitsmechanik und ihre Verwertung bei Modellversuchen. Ph.D. thesis, Technischen Hochschule zu Braunschweig (1919)

    Google Scholar 

  55. K. Wichterle, K. Smutná, M. Večeř, Shape and rising velocity of bubbles, in Proceedings of 36th International Conference of SSCHE, Tatranské Matliare (Slovak Society of Chemical Engineering, Bratislava, 2009)

    Google Scholar 

  56. X. Xi, Controlled translation and oscillation of micro-bubbles near a surface in an acoustic standing wave field. Ph.D. thesis, Imperial College London, Department of Mechanical Engineering (2012)

    Google Scholar 

  57. Yanuar, Gunawan, Sunaryo, A. Jamaluddin, Micro-bubble drag reduction on a high speed vessel model. J. Mar. Sci. Appl. 11(3), 301–304 (2012)

    Google Scholar 

  58. L.A. Zalmanzon, Method of automatically controlling pneumatic or hydraulic elements of instruments and other devices. US Patent, No. 3295543. Filed in December 1959

    Google Scholar 

  59. W.B. Zimmerman, M. Zandi, H.C.H. Bandulasena, V. Tesař, D.J. Gilmour, K. Ying, Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina. Appl. Energy 8(10), 3357–3369 (2011)

    Article  Google Scholar 

  60. W.B. Zimmerman, V. Tesař, H.C.H. Bandulasena, Towards energy efficient nanobubble generation with fluidic oscillation. Curr. Opin. Colloid Interface Sci. 16, 350–356 (2011)

    Article  Google Scholar 

  61. W.B. Zimmerman, M.K.H. Al-Mashhadani, H.C.H. Bandulasena, Evaporation dynamics of microbubbles. Chem. Eng. Sci. 101, 865–877 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Author’s work was supported by research grant No. 13-23046S by GAČR as well as also institutional support RVO:61388998.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Tesař .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tesař, V. (2017). Microbubbles: Properties, Mechanisms of Their Generation. In: Bodnár, T., Galdi, G., Nečasová, Š. (eds) Particles in Flows. Advances in Mathematical Fluid Mechanics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-60282-0_8

Download citation

Publish with us

Policies and ethics