Skip to main content

Dissipative Particle Dynamics: Foundation, Evolution, Implementation, and Applications

  • Chapter
  • First Online:

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

Abstract

Dissipative particle dynamics (DPD) is a particle-based Lagrangian method for simulating dynamic and rheological properties of simple and complex fluids at mesoscopic length and time scales. In this chapter, we present the DPD technique, beginning from its original ad hoc formulation and subsequent theoretical developments. Next, we introduce various extensions of the DPD method that can model non-isothermal processes, diffusion-reaction systems, and ionic fluids. We also present a brief review of programming algorithms for constructing efficient DPD simulation codes as well as existing software packages. Finally, we demonstrate the effectiveness of DPD to solve particle-fluid problems, which may not be tractable by continuum or atomistic approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Abu-Nada, Natural convection heat transfer simulation using energy conservative dissipative particle dynamics. Phys. Rev. E 81(5), 056704 (2010)

    Google Scholar 

  2. Y. Afshar, F. Schmid, A. Pishevar, S. Worley, Exploiting seeding of random number generators for efficient domain decomposition parallelization of dissipative particle dynamics. Comput. Phys. Commun. 184(4), 1119–1128 (2013)

    Article  Google Scholar 

  3. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1989)

    MATH  Google Scholar 

  4. M. Anand, K. Rajagopal, K.R. Rajagopal, A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood. J. Theor. Med. 5(3–4), 183–218 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Arienti, W.X. Pan, X.Y. Li, G. Karniadakis, Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions. J. Chem. Phys. 134(20), 204114 (2011)

    Google Scholar 

  6. J.B. Avalos, A.D. Mackie, Dissipative particle dynamics with energy conservation. Europhys. Lett. 40(2), 141–146 (1997)

    Article  Google Scholar 

  7. J.A Backer, C.P Lowe, H.C.J Hoefsloot, P.D Iedema, Poiseuille flow to measure the viscosity of particle model fluids. J. Chem. Phys. 122(15), 154503 (2005)

    Google Scholar 

  8. R.W. Balluffi, S.M. Allen, W.C. Carter, Kinetics of Materials (Wiley, Hoboken, 2005)

    Book  Google Scholar 

  9. G. Besold, I. Vattulainen, M. Karttunen, J.M. Polson, Towards better integrators for dissipative particle dynamics simulations. Phys. Rev. E 62(6), R7611–R7614 (2000)

    Article  Google Scholar 

  10. X. Bian, S. Litvinov, R. Qian, M. Ellero, N.A. Adams, Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics. Phys. Fluids 24(1), 012002 (2012)

    Google Scholar 

  11. A.L. Blumers, Y.-H. Tang, Z. Li, X.J. Li, G.E. Karniadakis. GPU-accelerated red blood cells simulations with transport dissipative particle dynamics. Comput. Phys. Commun. 217, 171–179 (2017)

    Article  Google Scholar 

  12. J. Bonet, T.S.L. Lok, Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Comput. Methods Appl. Mech. Eng. 180(1–2), 97–115 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Bow, I.V. Pivkin, M. Diez-Silva, S.J. Goldfless, M. Dao, J.C. Niles, S. Suresh, J. Han, A microfabricated deformability-based flow cytometer with application to malaria. Lab Chip 11, 1065–1073 (2011)

    Google Scholar 

  14. H.B. Callen, Thermodynamics and An Introduction to Thermostatistics (Wiley, New York, 1985)

    MATH  Google Scholar 

  15. Z.H. Cao, K. Luo, H.L. Yi, H.P. Tan, Energy conservative dissipative particle dynamics simulation of natural convection in eccentric annulus. Int. J. Heat Mass Transf. 65, 409–422 (2013)

    Article  Google Scholar 

  16. H.-Y. Chang, X.J. Li, H. Li, G.E. Karniadakis, MD/DPD multiscale framework for predicting morphology and stresses of red blood cells in health and disease. PLOS Comput. Biol. 10, e1005173 (2016)

    Article  Google Scholar 

  17. S. Chien, S. Usami, J.F. Bertles, Abnormal rheology of oxygenated blood in sickle cell anemia. J. Clin. Invest. 49, 623–634 (1970)

    Article  Google Scholar 

  18. A. Davtyan, J.F. Dama, G.A. Voth, H.C. Andersen, Dynamic force matching: a method for constructing dynamical coarse-grained models with realistic time dependence. J. Chem. Phys. 142(15), 154104 (2015)

    Google Scholar 

  19. M.G. Deng, Z. Li, O. Borodin, G.E. Karniadakis, cDPD: a new dissipative particle dynamics method for modeling electrokinetic phenomena at the mesoscale. J. Chem. Phys. 145(14), 144109 (2016)

    Google Scholar 

  20. M.G. Deng, W.X. Pan, G.E. Karniadakis, Anisotropic single-particle dissipative particle dynamics model. J. Comput. Phys. 336, 481–491 (2017)

    Article  MathSciNet  Google Scholar 

  21. R. Erban, S.J. Chapman, Reactive boundary conditions for stochastic simulations of reaction-diffusion processes. Phys. Biol. 4(1), 16–28 (2007)

    Article  Google Scholar 

  22. P. Español, Hydrodynamics from dissipative particle dynamics. Phys. Rev. E 52(2), 1734–1742 (1995)

    Article  MathSciNet  Google Scholar 

  23. P. Español, Dissipative particle dynamics with energy conservation. Europhys. Lett. 40(6), 631–636 (1997)

    Article  Google Scholar 

  24. P. Español, Fluid particle model. Phys. Rev. E 57(3), 2930–2948 (1998)

    Article  Google Scholar 

  25. P. Español, M. Revenga, Smoothed dissipative particle dynamics. Phys. Rev. E 67, 026705 (2003)

    Article  Google Scholar 

  26. P. Español, P. Warren, Statistical mechanics of dissipative particle dynamics. Europhys. Lett. 30(4), 191–196 (1995)

    Article  Google Scholar 

  27. X.J. Fan, N. Phan-Thien, N.T. Yong, X.H. Wu, D. Xu, Microchannel flow of a macromolecular suspension. Phys. Fluids 15(1), 11–21 (2003)

    Article  MATH  Google Scholar 

  28. D.A. Fedosov, B. Caswell, G.E. Karniadakis, A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys. J. 98(10), 2215–2225 (2010)

    Article  Google Scholar 

  29. D.A. Fedosov, H. Lei, B. Caswell, S. Suresh, G.E. Karniadakis, Multiscale modeling of red blood cell mechanics and blood flow in malaria. PLoS Comput. Biol. 7, e1002270 (2011)

    Article  MathSciNet  Google Scholar 

  30. D.A. Fedosov, W.X. Pan, B. Caswell, G. Gompper, G.E. Karniadakis, Predicting human blood viscosity in silico. Proc. Natl. Acad. Sci. USA 108(29), 11772–11777 (2011)

    Article  Google Scholar 

  31. D.A. Fedosov, B. Caswell, S. Suresh, G.E. Karniadakis, Quantifying the biophysical characteristics of Plasmodium-falciparum-parasitized red blood cells in microcirculation. Proc. Natl. Acad. Sci. USA 108, 35–39 (2011)

    Article  Google Scholar 

  32. C. Gardiner, Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences, 3rd edn. (Springer, New York, 2004)

    Book  MATH  Google Scholar 

  33. H. Grabert, Projection Operator Techniques in Nonequilibrium Statistical Mechanics, vol. 95 (Springer, Berlin/Heidelberg, 1982)

    Google Scholar 

  34. R.D. Groot, Applications of Dissipative Particle Dynamics. Lecture Notes in Physics, chapter 1, vol. 640 (Springer, Berlin/Heidelberg, 2004), pp. 5–38

    Google Scholar 

  35. R.D. Groot, P.B. Warren, Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107(11), 4423–4435 (1997)

    Article  Google Scholar 

  36. J.Y. Guo, X.J. Li, Y. Liu, H.J. Liang, Flow-induced translocation of polymers through a fluidic channel: a dissipative particle dynamics simulation study. J. Chem. Phys. 134(13), 134906 (2011)

    Google Scholar 

  37. J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids, Fourth Edition: With Applications to Soft Matter (Academic, Amsterdam, 2013)

    MATH  Google Scholar 

  38. C. Hijón, P. Español, E. Vanden-Eijnden, R. Delgado-Buscalioni, Mori–Zwanzig formalism as a practical computational tool. Faraday Discuss. 144, 301–322 (2010)

    Article  Google Scholar 

  39. P.J. Hoogerbrugge, J.M.V.A. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19(3), 155–160 (1992)

    Article  Google Scholar 

  40. M.X. Huang, Z.Q. Li, H.X. Guo, The effect of janus nanospheres on the phase separation of immiscible polymer blends via dissipative particle dynamics simulations. Soft Matter 8(25), 6834–6845 (2012)

    Article  Google Scholar 

  41. J.H. Irving, J.G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18(6), 817–829 (1950)

    Google Scholar 

  42. D.K. Kaul, H. Xue, Rate of deoxygenation and rheologic behavior of blood in sickle cell anemia. Blood 77, 1353–1361 (1991)

    Google Scholar 

  43. T. Kinjo, S.A. Hyodo, Equation of motion for coarse-grained simulation based on microscopic description. Phys. Rev. E 75(5), 051109 (2007)

    Google Scholar 

  44. J.M.V.A. Koelman, P.J. Hoogerbrugge, Dynamic simulations of hard-sphere suspensions under steady shear. Europhys. Lett. 21(3), 363–368 (1993)

    Article  Google Scholar 

  45. J. Kordilla, W.X. Pan, A. Tartakovsky, Smoothed particle hydrodynamics model for Landau-Lifshitz-Navier-Stokes and advection-diffusion equations. J. Chem. Phys. 141, 224112 (2014)

    Article  Google Scholar 

  46. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Volume 6 of A Course of Theoretical Physics) (Pergamon Press, New York, 1959)

    Google Scholar 

  47. A.W. Lees, S.F. Edwards, The computer study of transport processes under extreme conditions. J. Phys. C: Solid State Phys. 5(15), 1921–1929 (1972)

    Article  Google Scholar 

  48. H. Lei, G.E. Karniadakis, Quantifying the rheological and hemodynamic characteristics of sickle cell anemia. Biophys. J. 102, 185–194 (2012)

    Article  Google Scholar 

  49. H. Lei, G.E. Karniadakis, Probing vasoocclusion phenomena in sickle cell anemia via mesoscopic simulations. Proc. Natl. Acad. Sci. USA 110(28), 11326–11330 (2013)

    Article  Google Scholar 

  50. H. Lei, B. Caswell, G.E. Karniadakis, Direct construction of mesoscopic models from microscopic simulations. Phys. Rev. E 81(2), 026704 (2010)

    Google Scholar 

  51. H. Lei, D.A. Fedosov, B. Caswell, G.E. Karniadakis, Blood flow in small tubes: quantifying the transition to the non-continuum regime. J. Fluid Mech. 722, 214–239 (2013)

    Article  MATH  Google Scholar 

  52. H. Lei, X. Yang, Z. Li, G.E. Karniadakis, Systematic parameter inference in stochastic mesoscopic modeling. J. Comput. Phys. 330, 571–593 (2017)

    Article  MathSciNet  Google Scholar 

  53. B. Leimkuhler, X.C. Shang, On the numerical treatment of dissipative particle dynamics and related systems. J. Comput. Phys. 280, 72–95 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. B. Leimkuhler, X.C. Shang, Pairwise adaptive thermostats for improved accuracy and stability in dissipative particle dynamics. J. Comput. Phys. 324, 174–193 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  55. H. Li, G. Lykotrafitis, A coarse-grain molecular dynamics model for sickle hemoglobin fibers. J. Mech. Behav. Biomed. 4(2), 162–173 (2011)

    Article  Google Scholar 

  56. H. Li, G. Lykotrafitis, Two-component coarse-grained molecular-dynamics model for the human erythrocyte membrane. Biophys. J. 102(1), 75–84 (2012)

    Article  Google Scholar 

  57. X.J. Li, A.S. Popel, G.E. Karniadakis, Blood-plasma separation in Y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study. Phys. Biol. 9(2), 026010 (2012)

    Google Scholar 

  58. Z. Li, Z. W. Zhou, G.H. Hu, Dissipative particle dynamics simulation of droplet oscillations in AC electrowetting. J. Adhes. Sci. Technol. 26(12–17), 1883–1895 (2012)

    Google Scholar 

  59. H. Li, V. Ha, G. Lykotrafitis, Modeling sickle hemoglobin fibers as one chain of coarse-grained particles. J. Biomech. 45(11), 1947–1951 (2012)

    Article  Google Scholar 

  60. Z. Li, G.H. Hu, Z.L. Wang, Y.B. Ma, Z.W. Zhou, Three dimensional flow structures in a moving droplet on substrate: a dissipative particle dynamics study. Phys. Fluids 25(7), 072103 (2013)

    Google Scholar 

  61. Z. Li, X. Bian, B. Caswell, G.E. Karniadakis, Construction of dissipative particle dynamics models for complex fluids via the Mori–Zwanzig formulation. Soft Matter 10(43), 8659–8672 (2014)

    Article  Google Scholar 

  62. Z. Li, Y.-H. Tang, H. Lei, B. Caswell, G.E. Karniadakis, Energy-conserving dissipative particle dynamics with temperature-dependent properties. J. Comput. Phys. 265, 113–127 (2014)

    Article  MATH  Google Scholar 

  63. X.J. Li, Z.L. Peng, H. Lei, M. Dao, G.E. Karniadakis, Probing red blood cell mechanics, rheology and dynamics with a two-component multiscale model. Phil. Trans. R. Soc. A 372, 20130389 (2014)

    Article  MATH  Google Scholar 

  64. Z. Li, X. Bian, X.T. Li, G.E. Karniadakis, Incorporation of memory effects in coarse-grained modeling via the Mori–Zwanzig formalism. J. Chem. Phys. 143(24), 243128 (2015)

    Google Scholar 

  65. Z. Li, Y.-H. Tang, X.J. Li, G.E. Karniadakis, Mesoscale modeling of phase transition dynamics of thermoresponsive polymers. Chem. Commun. 51(55), 11038–11040 (2015)

    Article  Google Scholar 

  66. Z. Li, A. Yazdani, A. Tartakovsky, G.E. Karniadakis, Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems. J. Chem. Phys. 143(1), 014101 (2015)

    Google Scholar 

  67. Z. Li, X. Bian, Y.-H. Tang, G.E. Karniadakis, A dissipative particle dynamics method for arbitrarily complex geometries. arXiv preprint arXiv:1612.08761 (2016)

    Google Scholar 

  68. X.J. Li, E. Du, H. Lei, Y.-H. Tang, M. Dao, S. Suresh, G.E. Karniadakis, Patient-specific blood rheology in sickle-cell anaemia. Interface Focus 6(1), 20150065 (2016)

    Google Scholar 

  69. Z. Li, H.S. Lee, E. Darve, G.E. Karniadakis, Computing the non-Markovian coarse-grained interactions derived from the Mori–Zwanzig formalism in molecular systems: application to polymer melts. J. Chem. Phys. 146(1), 014104 (2017)

    Google Scholar 

  70. M. Lisal, J.K. Brennan, Alignment of lamellar diblock copolymer phases under shear: insight from dissipative particle dynamics simulations. Langmuir 23(9), 4809–4818 (2007)

    Article  Google Scholar 

  71. M.B. Liu, G.R. Liu, L.W. Zhou, J.Z. Chang, Dissipative particle dynamics (DPD): an overview and recent developments. Arch. Comput. Meth. Eng. 22(4), 529–556 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  72. Z.Y. Lu, Y.M. Wang, An Introduction to Dissipative Particle Dynamics. Methods in Molecular Biology, chap. 24, vol. 924 (Humana Press, New York, 2013), pp. 617–633

    Google Scholar 

  73. K. Lykov, X.J. Li, H. Lei, I.V. Pivkin, G.E. Karniadakis, Inflow/outflow boundary conditions for particle-based blood flow simulations: application to arterial bifurcations and trees. PLoS Comput. Biol. 11(8), e1004410 (2015)

    Google Scholar 

  74. A.D. Mackie, J.B. Avalos, V. Navas, Dissipative particle dynamics with energy conservation: modelling of heat flow. Phys. Chem. Chem. Phys. 1(9), 2039–2049 (1999)

    Article  Google Scholar 

  75. C.A. Marsh, J.M. Yeomans, Dissipative particle dynamics: the equilibrium for finite time steps. Europhys. Lett. 37(8), 511–516 (1997)

    Article  Google Scholar 

  76. C.A. Marsh, G. Backx, M.H. Ernst, Fokker-Planck-Boltzmann equation for dissipative particle dynamics. Europhys. Lett. 38(6), 411–415 (1997)

    Article  Google Scholar 

  77. C.A. Marsh, G. Backx, M.H. Ernst, Static and dynamic properties of dissipative particle dynamics. Phys. Rev. E 56(2), 1676–1691 (1997)

    Article  Google Scholar 

  78. Z.G. Mills, W.B. Mao, A. Alexeev, Mesoscale modeling: solving complex flows in biology and biotechnology. Trends Biotechnol. 31(7), 426–434 (2013)

    Article  Google Scholar 

  79. J.J. Monaghan, Smoothed particle hydrodynamics. Rep. Prog. Phys. 68(8), 1703–1759 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  80. H. Mori, Transport, collective motion, and Brownian motion. Prog. Theor. Phys. 33(3), 423–455 (1965)

    Article  MATH  Google Scholar 

  81. S.V. Nikolov, H. Shum, A.C. Balazs, A. Alexeev, Computational design of microscopic swimmers and capsules: from directed motion to collective behavior. Curr. Opin. Colloid Interface Sci. 21, 44–56 (2016)

    Article  Google Scholar 

  82. W.G. Noid, Perspective: coarse-grained models for biomolecular systems. J. Chem. Phys. 139, 090901 (2013)

    Article  Google Scholar 

  83. J.M. Ortiz de Zárate, J.V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures (Elsevier, Amsterdam, 2006)

    MATH  Google Scholar 

  84. H.C. Öttinger, Beyond Equilibrium Thermodynamics (Wiley-Interscience, New York, 2005)

    Book  Google Scholar 

  85. I. Pagonabarraga, D. Frenkel, Dissipative particle dynamics for interacting systems. J. Chem. Phys. 115(11), 5015–5026 (2001)

    Article  Google Scholar 

  86. W.X. Pan, I.V. Pivkin, G.E. Karniadakis, Single-particle hydrodynamics in DPD: a new formulation. Europhys. Lett. 84(1), 10012 (2008)

    Google Scholar 

  87. D.Y. Pan, J.X. Hu, X.M. Shao, Lees-Edwards boundary condition for simulation of polymer suspension with dissipative particle dynamics method. Mol. Simul. 42(4), 328–336 (2016)

    Article  Google Scholar 

  88. N. Phan-Thien, N. Mai-Duy, B.C. Khoo, A spring model for suspended particles in dissipative particle dynamics. J. Rheol. 58(4), 839–867 (2014)

    Article  Google Scholar 

  89. C.L. Phillips, J.A. Anderson, S.C. Glotzer, Pseudo-random number generation for Brownian dynamics and dissipative particle dynamics simulations on GPU devices. J. Comput. Phys. 230(19), 7191–7201 (2011)

    Article  MATH  Google Scholar 

  90. I.V. Pivkin, G.E. Karniadakis, A new method to impose no-slip boundary conditions in dissipative particle dynamics. J. Comput. Phys. 207(1), 114–128 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  91. I.V. Pivkin, G.E. Karniadakis, Controlling density fluctuations in wall-bounded dissipative particle dynamics systems. Phys. Rev. Lett. 96, 206001 (2006)

    Article  Google Scholar 

  92. I.V. Pivkin, G.E. Karniadakis, Accurate coarse-grained modeling of red blood cells. Phys. Rev. Lett. 101, 118105 (2008)

    Article  Google Scholar 

  93. I.V. Pivkin, Z. Peng, G.E. Karniadakis, P.A. Buffet, M. Dao, S. Suresh, Biomechanics of red blood cells in human spleen and consequences for physiology and disease. Proc. Natl. Acad. Sci. USA 113(28), 7804–7809 (2016)

    Article  Google Scholar 

  94. M. Praprotnik, L.D. Site, K. Kremer, Adaptive resolution scheme for efficient hybrid atomistic-mesoscale molecular dynamics simulations of dense liquids. Phys. Rev. E 73, 066701 (2006)

    Article  Google Scholar 

  95. R. Qiao, P. He, Simulation of heat conduction in nanocomposite using energy-conserving dissipative particle dynamics. Mol. Simul. 33(8), 677–683 (2007)

    Article  Google Scholar 

  96. M. Ripoll, P. Español, M.H. Ernst, Dissipative particle dynamics with energy conservation: heat conduction. Int. J. Mod. Phys. C 9(8), 1329–1338 (1998)

    Article  Google Scholar 

  97. D. Rossinelli, Y.-H. Tang, K. Lykov, D. Alexeev, M. Bernaschi, P. Hadjidoukas, M. Bisson, W. Joubert, C. Conti, G. Karniadakis, M. Fatica, I. Pivkin, P. Koumoutsakos, The in-silico lab-on-a-chip: petascale and high-throughput simulations of microfluidics at cell resolution, in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’15 (Association for Computing Machinery, New York, 2015), pp. 2:1–2:12

    Google Scholar 

  98. M.G. Saunders, G.A. Voth, Coarse-graining methods for computational biology. Annu. Rev. Biophys. 42, 73–93 (2013)

    Article  Google Scholar 

  99. T. Shardlow, Splitting for dissipative particle dynamics. SIAM J. Sci. Comput. 24(4), 1267–1282 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  100. V. Symeonidis, G.E. Karniadakis, B. Caswell, Dissipative particle dynamics simulations of polymer chains: scaling laws and shearing response compared to dna experiments. Phys. Rev. Lett. 95, 076001 (2005)

    Article  Google Scholar 

  101. Y.-H. Tang, G.E. Karniadakis, Accelerating dissipative particle dynamics simulations on GPUs: algorithms, numerics and applications. Comput. Phys. Commun. 185(11), 2809–2822 (2014)

    Article  MathSciNet  Google Scholar 

  102. Y.-H. Tang, Z. Li, X.J. Li, M.G. Deng, G.E. Karniadakis, Non-equilibrium dynamics of vesicles and micelles by self-assembly of block copolymers with double thermoresponsivity. Macromolecules 49(7), 2895–2903 (2016)

    Article  Google Scholar 

  103. A. Tiwari, J. Abraham, Dissipative particle dynamics model for two-phase flows. Phys. Rev. E 74, 056701 (2006)

    Article  MathSciNet  Google Scholar 

  104. A. Vázquez-Quesada, M. Ellero, P. Español, Smoothed particle hydrodynamic model for viscoelastic fluids with thermal fluctuations. Phys. Rev. E 79, 056707 (2009)

    Article  MathSciNet  Google Scholar 

  105. Y.X. Wang, S. Chen, Numerical study on droplet sliding across micropillars. Langmuir 31(16), 4673–4677 (2015)

    Article  Google Scholar 

  106. P.B. Warren, Vapor-liquid coexistence in many-body dissipative particle dynamics. Phys. Rev. E 68, 066702 (2003)

    Article  Google Scholar 

  107. C.M. Wijmans, B. Smit, Simulating tethered polymer layers in shear flow with the dissipative particle dynamics technique. Macromolecules 35(18), 7138–7148 (2002)

    Article  Google Scholar 

  108. S.M. Willemsen, H.C.J. Hoefsloot, P.D. Iedema, No-slip boundary condition in dissipative particle dynamics. Int. J. Mod. Phys. C 11(5), 881–890 (2000)

    Article  MATH  Google Scholar 

  109. T. Ye, N. Phan-Thien, B. Khoo, C.T. Lim, Numerical modelling of a healthy/malaria-infected erythrocyte in shear flow using dissipative particle dynamics method. J. Appl. Phys. 115(22), 224701 (2014)

    Google Scholar 

  110. S. Yip, M.P. Short, Multiscale materials modelling at the mesoscale. Nat. Mater. 12(9), 774–777 (2013)

    Article  Google Scholar 

  111. R. Zwanzig, Ensemble method in the theory of irreversibility. J. Chem. Phys. 33(5), 1338–1341 (1960)

    Article  MathSciNet  Google Scholar 

  112. R. Zwanzig, Memory effects in irreversible thermodynamics. Phys. Rev. 124(4), 983–992 (1961)

    Article  MATH  Google Scholar 

  113. R. Zwanzig, Nonequilibrium Statistical Mechanics, vol. 54 (Oxford University Press, Oxford, 2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Karniadakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Li, Z. et al. (2017). Dissipative Particle Dynamics: Foundation, Evolution, Implementation, and Applications. In: Bodnár, T., Galdi, G., Nečasová, Š. (eds) Particles in Flows. Advances in Mathematical Fluid Mechanics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-60282-0_5

Download citation

Publish with us

Policies and ethics