Skip to main content

Noninfectious and Nonmalignant Complications of Anti-TNF Therapy

  • Chapter
  • First Online:
Treatment of Inflammatory Bowel Disease with Biologics
  • 986 Accesses

Abstract

Anti-TNF therapies are commonly used in the treatment of moderate to severe inflammatory bowel disease. The noninfectious and nonmalignant complications of anti-TNF therapy include infusion or injection site reactions, psoriasiform and eczematous eruptions, lupus-like reaction, hepatotoxicity, demyelination, and heart failure. Infusion/injection site and dermatologic reactions often can be managed with supportive care without discontinuation of the anti-TNF. Early recognition and management of these complications is important to initiate supportive care if indicated, to minimize symptoms, and to transition to other therapies if necessary. This chapter focuses on the clinical presentation, pathophysiology, diagnostic evaluation, and management of the noninfectious and nonmalignant complications of anti-TNF therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Corominas M, Gastaminza G, Lobera T. Hypersensitivity reactions to biological drugs. J Investig Allergol Clin Immunol. 2014;24(4):212–25. quiz 1p following 225

    CAS  PubMed  Google Scholar 

  2. Mocci G, et al. Dermatological adverse reactions during anti-TNF treatments: focus on inflammatory bowel disease. J Crohns Colitis. 2013;7(10):769–79.

    Article  PubMed  Google Scholar 

  3. Fidder H, et al. Long-term safety of infliximab for the treatment of inflammatory bowel disease: a single-centre cohort study. Gut. 2009;58(4):501–8.

    Article  CAS  PubMed  Google Scholar 

  4. Feuerstein JD, Cheifetz AS. Miscellaneous adverse events with biologic agents (excludes infection and malignancy). Gastroenterol Clin N Am. 2014;43(3):543–63.

    Article  Google Scholar 

  5. Paltiel M, et al. Immediate type I hypersensitivity response implicated in worsening injection site reactions to adalimumab. Arch Dermatol. 2008;144(9):1190–4.

    Article  CAS  PubMed  Google Scholar 

  6. US Food and Drug Administration. FDA labels for TNF inhibitors: infliximab, http://www.accessdata.fda.gov/drugsatfda_docs/label/2008/125057s114lbl.pdf.

  7. Leach MW, et al. Immunogenicity/hypersensitivity of biologics. Toxicol Pathol. 2014;42(1):293–300.

    Article  CAS  PubMed  Google Scholar 

  8. Baert F, et al. Early trough levels and antibodies to infliximab predict safety and success of reinitiation of infliximab therapy. Clin Gastroenterol Hepatol. 2014;12(9):1474–81.e2. quiz e91

    Article  CAS  PubMed  Google Scholar 

  9. Kugathasan S, et al. Infliximab retreatment in adults and children with Crohn’s disease: risk factors for the development of delayed severe systemic reaction. Am J Gastroenterol. 2002;97(6):1408–14.

    Article  CAS  PubMed  Google Scholar 

  10. O'Meara S, Nanda KS, Moss AC. Antibodies to infliximab and risk of infusion reactions in patients with inflammatory bowel disease: a systematic review and meta-analysis. Inflamm Bowel Dis. 2014;20(1):1–6.

    Article  PubMed  Google Scholar 

  11. Baert F, et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med. 2003;348(7):601–8.

    Article  CAS  PubMed  Google Scholar 

  12. Hanauer SB, et al. Maintenance infliximab for Crohn's disease: the ACCENT I randomised trial. Lancet. 2002;359(9317):1541–9.

    Article  CAS  PubMed  Google Scholar 

  13. Hwang SH, et al. Detection of IgE binding component to infliximab in a patient with infliximab-induced anaphylaxis. Ann Allergy Asthma Immunol. 2014;112(4):393–4.

    Article  CAS  PubMed  Google Scholar 

  14. Jonsson F, et al. Human FcgammaRIIA induces anaphylactic and allergic reactions. Blood. 2012;119(11):2533–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jonsson F, et al. An unexpected role for neutrophils in anaphylaxis. Med Sci (Paris). 2011;27(10):823–5.

    Article  Google Scholar 

  16. Kay AB. Allergy and allergic diseases. First of two parts. N Engl J Med. 2001;344(1):30–7.

    Article  CAS  PubMed  Google Scholar 

  17. Cheifetz A, et al. The incidence and management of infusion reactions to infliximab: a large center experience. Am J Gastroenterol. 2003;98(6):1315–24.

    Article  CAS  PubMed  Google Scholar 

  18. Lichtenstein L, et al. Infliximab-related infusion reactions: systematic review. J Crohns Colitis. 2015;9(9):806–15.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brennan PJ, et al. Hypersensitivity reactions to mAbs: 105 desensitizations in 23 patients, from evaluation to treatment. J Allergy Clin Immunol. 2009;124(6):1259–66.

    Article  CAS  PubMed  Google Scholar 

  20. Hong DI, et al. Allergy to monoclonal antibodies: cutting-edge desensitization methods for cutting-edge therapies. Expert Rev Clin Immunol. 2012;8(1):43–52. quiz 53-4

    Article  CAS  PubMed  Google Scholar 

  21. Ben-Horin S, et al. Addition of an immunomodulator to infliximab therapy eliminates antidrug antibodies in serum and restores clinical response of patients with inflammatory bowel disease. Clin Gastroenterol Hepatol. 2013;11(4):444–7.

    Article  CAS  PubMed  Google Scholar 

  22. Grosen A, Julsgaard M, Christensen LA. Serum sickness-like reaction due to infliximab reintroduction during pregnancy. J Crohns Colitis. 2013;7(5):e191.

    Article  PubMed  Google Scholar 

  23. Ben-Horin S, et al. The decline of anti-drug antibody titres after discontinuation of anti-TNFs: implications for predicting re-induction outcome in IBD. Aliment Pharmacol Ther. 2012;35(6):714–22.

    Article  CAS  PubMed  Google Scholar 

  24. Farrell RJ, et al. Intravenous hydrocortisone premedication reduces antibodies to infliximab in Crohn’s disease: a randomized controlled trial. Gastroenterology. 2003;124(4):917–24.

    Article  CAS  PubMed  Google Scholar 

  25. Rahier JF, et al. Severe skin lesions cause patients with inflammatory bowel disease to discontinue anti-tumor necrosis factor therapy. Clin Gastroenterol Hepatol. 2010;8(12):1048–55.

    Article  PubMed  Google Scholar 

  26. Hellstrom AE, Farkkila M, Kolho KL. Infliximab-induced skin manifestations in patients with inflammatory bowel disease. Scand J Gastroenterol. 2016;51(5):563–71.

    Article  PubMed  CAS  Google Scholar 

  27. Freling E, et al. Cumulative incidence of, risk factors for, and outcome of dermatological complications of anti-TNF therapy in inflammatory bowel disease: a 14-year experience. Am J Gastroenterol. 2015;110(8):1186–96.

    Article  CAS  PubMed  Google Scholar 

  28. Fiorino G, et al. Review article: anti TNF-alpha induced psoriasis in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2009;29(9):921–7.

    Article  CAS  PubMed  Google Scholar 

  29. Kip KE, et al. Tumor necrosis factor alpha antagonist-associated psoriasis in inflammatory diseases: an analysis of the FDA adverse event reporting system. Inflamm Bowel Dis. 2013;19(6):1164–72.

    Article  PubMed  Google Scholar 

  30. Fiorino G, et al. Paradoxical immune-mediated inflammation in inflammatory bowel disease patients receiving anti-TNF-alpha agents. Autoimmun Rev. 2014;13(1):15–9.

    Article  CAS  PubMed  Google Scholar 

  31. Guerra I, et al. Induction of psoriasis with anti-TNF agents in patients with inflammatory bowel disease: a report of 21 cases. J Crohns Colitis. 2012;6(5):518–23.

    Article  PubMed  Google Scholar 

  32. George LA, et al. Psoriasiform skin lesions are caused by anti-TNF agents used for the treatment of inflammatory bowel disease. Dig Dis Sci. 2015;60(11):3424–30.

    Article  CAS  PubMed  Google Scholar 

  33. Denadai R, et al. Induction or exacerbation of psoriatic lesions during anti-TNF-alpha therapy for inflammatory bowel disease: a systematic literature review based on 222 cases. J Crohns Colitis. 2013;7(7):517–24.

    Article  PubMed  Google Scholar 

  34. Cullen G, et al. Psoriasis associated with anti-tumour necrosis factor therapy in inflammatory bowel disease: a new series and a review of 120 cases from the literature. Aliment Pharmacol Ther. 2011;34(11–12):1318–27.

    Article  CAS  PubMed  Google Scholar 

  35. Ramos-Casals M, et al. Autoimmune diseases induced by TNF-targeted therapies. Best Pract Res Clin Rheumatol. 2008;22(5):847–61.

    Article  CAS  PubMed  Google Scholar 

  36. Collamer AN, Battafarano DF. Psoriatic skin lesions induced by tumor necrosis factor antagonist therapy: clinical features and possible immunopathogenesis. Semin Arthritis Rheum. 2010;40(3):233–40.

    Article  CAS  PubMed  Google Scholar 

  37. Wolk K, et al. Excessive body weight and smoking associates with a high risk of onset of plaque psoriasis. Acta Derm Venereol. 2009;89(5):492–7.

    Article  PubMed  Google Scholar 

  38. Pugliese D, et al. Paradoxical psoriasis in a large cohort of patients with inflammatory bowel disease receiving treatment with anti-TNF alpha: 5-year follow-up study. Aliment Pharmacol Ther. 2015;42(7):880–8.

    Article  CAS  PubMed  Google Scholar 

  39. Afzali A, et al. The association of psoriasiform rash with anti-tumor necrosis factor (anti-TNF) therapy in inflammatory bowel disease: a single academic center case series. J Crohns Colitis. 2014;8(6):480–8.

    Article  PubMed  Google Scholar 

  40. Huang V, et al. A study investigating the association of dermatological and infusion reactions to infliximab and infliximab trough levels. Can J Gastroenterol Hepatol. 2015;29(1):35–40.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cleynen I, et al. Characteristics of skin lesions associated with anti-tumor necrosis factor therapy in patients with inflammatory bowel disease: a cohort study. Ann Intern Med. 2016;164(1):10–22.

    Article  PubMed  Google Scholar 

  42. Funk J, et al. Psoriasis induced by interferon-alpha. Br J Dermatol. 1991;125(5):463–5.

    Article  CAS  PubMed  Google Scholar 

  43. de Gannes GC, et al. Psoriasis and pustular dermatitis triggered by TNF-{alpha} inhibitors in patients with rheumatologic conditions. Arch Dermatol. 2007;143(2):223–31.

    Article  PubMed  Google Scholar 

  44. Ariza ME, Williams MV. A human endogenous retrovirus K dUTPase triggers a TH1, TH17 cytokine response: does it have a role in psoriasis? J Invest Dermatol. 2011;131(12):2419–27.

    Article  CAS  PubMed  Google Scholar 

  45. Riveira-Munoz E, et al. Meta-analysis confirms the LCE3C_LCE3B deletion as a risk factor for psoriasis in several ethnic groups and finds interaction with HLA-Cw6. J Invest Dermatol. 2011;131(5):1105–9.

    Article  CAS  PubMed  Google Scholar 

  46. Cantaert T, et al. Type I IFN and TNFalpha cross-regulation in immune-mediated inflammatory disease: basic concepts and clinical relevance. Arthritis Res Ther. 2010;12(5):219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Nestle FO, et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J Exp Med. 2005;202(1):135–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Seneschal J, et al. Cytokine imbalance with increased production of interferon-alpha in psoriasiform eruptions associated with antitumour necrosis factor-alpha treatments. Br J Dermatol. 2009;161(5):1081–8.

    Article  CAS  PubMed  Google Scholar 

  49. Wollenberg A, et al. Plasmacytoid dendritic cells: a new cutaneous dendritic cell subset with distinct role in inflammatory skin diseases. J Invest Dermatol. 2002;119(5):1096–102.

    Article  CAS  PubMed  Google Scholar 

  50. Aeberli D, et al. Increase of peripheral CXCR3 positive T lymphocytes upon treatment of RA patients with TNF-alpha inhibitors. Rheumatology. 2005;44(2):172–5.

    Article  CAS  PubMed  Google Scholar 

  51. Tsankov N, Kazandjieva J, Drenovska K. Drugs in exacerbation and provocation of psoriasis. Clin Dermatol. 1998;16(3):333–51.

    Article  CAS  PubMed  Google Scholar 

  52. Beigel F, et al. Formation of antinuclear and double-strand DNA antibodies and frequency of lupus-like syndrome in anti-TNF-alpha antibody-treated patients with inflammatory bowel disease. Inflamm Bowel Dis. 2011;17(1):91–8.

    Article  PubMed  Google Scholar 

  53. Katz U, Zandman-Goddard G. Drug-induced lupus: an update. Autoimmun Rev. 2010;10(1):46–50.

    Article  CAS  PubMed  Google Scholar 

  54. Ramos-Casals M, et al. Autoimmune diseases induced by TNF-targeted therapies: analysis of 233 cases. Medicine. 2007;86(4):242–51.

    Article  PubMed  Google Scholar 

  55. Xiao X, Chang C. Diagnosis and classification of drug-induced autoimmunity (DIA). J Autoimmun. 2014;48-49:66–72.

    Article  CAS  PubMed  Google Scholar 

  56. Costa MF, Said NR, Zimmermann B. Drug-induced lupus due to anti-tumor necrosis factor alpha agents. Semin Arthritis Rheum. 2008;37(6):381–7.

    Article  CAS  PubMed  Google Scholar 

  57. Vaz JL, et al. Infliximab-induced autoantibodies: a multicenter study. Clin Rheumatol. 2016;35(2):325–32.

    Article  PubMed  Google Scholar 

  58. Nancey S, et al. Infliximab treatment does not induce organ-specific or nonorgan-specific autoantibodies other than antinuclear and anti-double-stranded DNA autoantibodies in Crohn’s disease. Inflamm Bowel Dis. 2005;11(11):986–91.

    Article  PubMed  Google Scholar 

  59. Wetter DA, Davis MD. Lupus-like syndrome attributable to anti-tumor necrosis factor alpha therapy in 14 patients during an 8-year period at Mayo Clinic. Mayo Clin Proc. 2009;84(11):979–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Williams VL, Cohen PR. TNF alpha antagonist-induced lupus-like syndrome: report and review of the literature with implications for treatment with alternative TNF alpha antagonists. Int J Dermatol. 2011;50(5):619–25.

    Article  PubMed  Google Scholar 

  61. Amarante CF, et al. Drug-induced lupus with leukocytoclastic vasculitis: a rare expression associated with adalimumab. An Bras Dermatol. 2015;90(3 Suppl 1):121–4.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Moulis G, et al. Is the risk of tumour necrosis factor inhibitor-induced lupus or lupus-like syndrome the same with monoclonal antibodies and soluble receptor? A case/non-case study in a nationwide pharmacovigilance database. Rheumatology (Oxford). 2014;53(10):1864–71.

    Article  CAS  Google Scholar 

  63. Boodhoo KD, Liu S, Zuo X. Impact of sex disparities on the clinical manifestations in patients with systemic lupus erythematosus: a systematic review and meta-analysis. Medicine (Baltimore). 2016;95(29):e4272.

    Article  CAS  Google Scholar 

  64. Yacoub Wasef SZ. Gender differences in systemic lupus erythematosus. Gend Med. 2004;1(1):12–7.

    Article  PubMed  Google Scholar 

  65. Das J, et al. Endogenous humoral autoreactive immune responses to apoptotic cells: effects on phagocytic uptake, chemotactic migration and antigenic spread. Eur J Immunol. 2008;38(12):3561–74.

    Article  CAS  PubMed  Google Scholar 

  66. D'Auria F, et al. Accumulation of plasma nucleosomes upon treatment with anti-tumour necrosis factor-alpha antibodies. J Intern Med. 2004;255(3):409–18.

    Article  PubMed  Google Scholar 

  67. Kocharla L, Mongey AB. Is the development of drug-related lupus a contraindication for switching from one TNF alpha inhibitor to another? Lupus. 2009;18(2):169–71.

    Article  CAS  PubMed  Google Scholar 

  68. Shelton E, et al. New onset idiosyncratic liver enzyme elevations with biological therapy in inflammatory bowel disease. Aliment Pharmacol Ther. 2015;41(10):972–9.

    Article  CAS  PubMed  Google Scholar 

  69. Rodrigues S, et al. Autoimmune hepatitis and anti-tumor necrosis factor alpha therapy: a single center report of 8 cases. World J Gastroenterol. 2015;21(24):7584–8.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ghabril M, et al. Liver injury from tumor necrosis factor-alpha antagonists: analysis of thirty-four cases. Clin Gastroenterol Hepatol. 2013;11(5):558–564.e3.

    Article  CAS  PubMed  Google Scholar 

  71. Bjornsson ES, et al. Risk of drug-induced liver injury from tumor necrosis factor antagonists. Clin Gastroenterol Hepatol. 2015;13(3):602–8.

    Article  CAS  PubMed  Google Scholar 

  72. Thiefin G, et al. Infliximab-induced hepatitis: absence of cross-toxicity with etanercept. Joint Bone Spine. 2008;75(6):737–9.

    Article  PubMed  Google Scholar 

  73. Massarotti M, Marasini B. Successful treatment with etanercept of a patient with psoriatic arthritis after adalimumab-related hepatotoxicity. Int J Immunopathol Pharmacol. 2009;22(2):547–9.

    Article  CAS  PubMed  Google Scholar 

  74. Garcia Aparicio AM, et al. Successful treatment with etanercept in a patient with hepatotoxicity closely related to infliximab. Clin Rheumatol. 2007;26(5):811–3.

    Article  PubMed  Google Scholar 

  75. Becker H, et al. Etanercept tolerance in a patient with previous infliximab-induced hepatitis. Clin Rheumatol. 2008;27(12):1597–8.

    Article  PubMed  Google Scholar 

  76. Cheng FK, Bridges EE, Betteridge JD. Drug-induced liver injury from initial dose of infliximab. Mil Med. 2015;180(6):e723–4.

    Article  PubMed  Google Scholar 

  77. Tobon GJ, et al. Serious liver disease induced by infliximab. Clin Rheumatol. 2007;26(4):578–81.

    Article  PubMed  Google Scholar 

  78. Ramos-Casals M, et al. Autoimmune diseases induced by biological agents: a double-edged sword? Autoimmun Rev. 2010;9(3):188–93.

    Article  CAS  PubMed  Google Scholar 

  79. Jacobson DL, et al. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol. 1997;84(3):223–43.

    Article  CAS  PubMed  Google Scholar 

  80. van Oosten BW, et al. Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology. 1996;47(6):1531–4.

    Article  PubMed  Google Scholar 

  81. Sicotte NL, Voskuhl RR. Onset of multiple sclerosis associated with anti-TNF therapy. Neurology. 2001;57(10):1885–8.

    Article  CAS  PubMed  Google Scholar 

  82. Mohan N, et al. Demyelination occurring during anti-tumor necrosis factor alpha therapy for inflammatory arthritides. Arthritis Rheum. 2001;44(12):2862–9.

    Article  CAS  PubMed  Google Scholar 

  83. Enayati PJ, Papadakis KA. Association of anti-tumor necrosis factor therapy with the development of multiple sclerosis. J Clin Gastroenterol. 2005;39(4):303–6.

    Article  PubMed  Google Scholar 

  84. Bellesi M, et al. CNS demyelination during anti-tumor necrosis factor alpha therapy. J Neurol. 2006;253(5):668–9.

    Article  PubMed  Google Scholar 

  85. Robinson WH, Genovese MC, Moreland LW. Demyelinating and neurologic events reported in association with tumor necrosis factor alpha antagonism: by what mechanisms could tumor necrosis factor alpha antagonists improve rheumatoid arthritis but exacerbate multiple sclerosis? Arthritis Rheum. 2001;44(9):1977–83.

    Article  CAS  PubMed  Google Scholar 

  86. Andreadou E, et al. Demyelinating disease following anti-TNFa treatment: a causal or coincidental association? Report of four cases and review of the literature. Case Rep Neurol Med. 2013;2013:671935.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Gupta G, Gelfand JM, Lewis JD. Increased risk for demyelinating diseases in patients with inflammatory bowel disease. Gastroenterology. 2005;129(3):819–26.

    Article  PubMed  Google Scholar 

  88. Kaltsonoudis E, et al. Neurological adverse events in patients receiving anti-TNF therapy: a prospective imaging and electrophysiological study. Arthritis Res Ther. 2014;16(3):R125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Khoury SJ, et al. Acquired tolerance to experimental autoimmune encephalomyelitis by intrathymic injection of myelin basic protein or its major encephalitogenic peptide. J Exp Med. 1993;178(2):559–66.

    Article  CAS  PubMed  Google Scholar 

  90. van Boxel-Dezaire AH, et al. Decreased interleukin-10 and increased interleukin-12p40 mRNA are associated with disease activity and characterize different disease stages in multiple sclerosis. Ann Neurol. 1999;45(6):695–703.

    Article  PubMed  Google Scholar 

  91. Noseworthy JH, et al. Multiple sclerosis. N Engl J Med. 2000;343(13):938–52.

    Article  CAS  PubMed  Google Scholar 

  92. Kwon HJ, et al. Case reports of heart failure after therapy with a tumor necrosis factor antagonist. Ann Intern Med. 2003;138(10):807–11.

    Article  PubMed  Google Scholar 

  93. Levine B, et al. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med. 1990;323(4):236–41.

    Article  CAS  PubMed  Google Scholar 

  94. Bozkurt B, et al. Results of targeted anti-tumor necrosis factor therapy with etanercept (ENBREL) in patients with advanced heart failure. Circulation. 2001;103(8):1044–7.

    Article  CAS  PubMed  Google Scholar 

  95. Deswal A, et al. Safety and efficacy of a soluble P75 tumor necrosis factor receptor (Enbrel, etanercept) in patients with advanced heart failure. Circulation. 1999;99(25):3224–6.

    Article  CAS  PubMed  Google Scholar 

  96. Anker SD, Coats AJ. How to RECOVER from RENAISSANCE? The significance of the results of RECOVER, RENAISSANCE, RENEWAL and ATTACH. Int J Cardiol. 2002;86(2–3):123–30.

    Article  PubMed  Google Scholar 

  97. Coletta AP, et al. Clinical trials update: RENEWAL (RENAISSANCE and RECOVER) and ATTACH. Eur J Heart Fail. 2002;4(4):559–61.

    Article  CAS  PubMed  Google Scholar 

  98. Chung ES, et al. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF therapy against congestive heart failure (ATTACH) trial. Circulation. 2003;107(25):3133–40.

    Article  CAS  PubMed  Google Scholar 

  99. Schiff MH, et al. Safety analyses of adalimumab (HUMIRA) in global clinical trials and US postmarketing surveillance of patients with rheumatoid arthritis. Ann Rheum Dis. 2006;65(7):889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Feltelius N, et al. Results from a nationwide postmarketing cohort study of patients in Sweden treated with etanercept. Ann Rheum Dis. 2005;64(2):246–52.

    Article  CAS  PubMed  Google Scholar 

  101. Adamson R, et al. Fatal acute necrotizing eosinophilic myocarditis temporally related to use of adalimumab in a patient with relapsing polychondritis. J Clin Rheumatol. 2013;19(7):386–9.

    Article  PubMed  Google Scholar 

  102. Balakumar P, Singh M. Anti-tumour necrosis factor-alpha therapy in heart failure: future directions. Basic Clin Pharmacol Toxicol. 2006;99(6):391–7.

    Article  CAS  PubMed  Google Scholar 

  103. Kurrelmeyer KM, et al. Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc Natl Acad Sci U S A. 2000;97(10):5456–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sugamori T, et al. Increased nitric oxide in proportion to the severity of heart failure in patients with dilated cardiomyopathy: close correlation of tumor necrosis factor-alpha with systemic and local production of nitric oxide. Circ J. 2002;66(7):627–32.

    Article  CAS  PubMed  Google Scholar 

  105. Mann DL. Tumor necrosis factor-induced signal transduction and left ventricular remodeling. J Card Fail. 2002;8(6 Suppl):S379–86.

    Article  CAS  PubMed  Google Scholar 

  106. Sinagra E, et al. Heart failure and anti tumor necrosis factor-alpha in systemic chronic inflammatory diseases. Eur J Intern Med. 2013;24(5):385–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond K. Cross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Wong, U., Cross, R.K. (2018). Noninfectious and Nonmalignant Complications of Anti-TNF Therapy. In: Cheifetz, A., Feuerstein, J. (eds) Treatment of Inflammatory Bowel Disease with Biologics . Springer, Cham. https://doi.org/10.1007/978-3-319-60276-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60276-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60275-2

  • Online ISBN: 978-3-319-60276-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics