WaterVis: GeoVisual Analytics for Exploring Hydrological Data

  • Mahshid MarboutiEmail author
  • Rahul Bhaskar
  • Zahra Shakeri Hossein Abad
  • Craig Anslow
  • Leland Jackson
  • Frank Maurer
Part of the Studies in Big Data book series (SBD, volume 27)


Visualizing and analyzing large amounts of environmental and hydrological data on maps is difficult. Interaction and manipulation of data is crucial for decision making during natural disasters like floods. In this paper we present WaterVis: a geovisual Big Data analytics application to help analysts explore large amounts of hydrological data to create early flood warnings, and make strategic decisions in critical situations. The implications of WaterVis can help inform the design of future Big Data analytics applications.


  1. 1.
    Guzman J, Moriasi D, Chu M, Starks P, Steiner J, Gowda P. A tool for mapping and spatio-temporal analysis of hydrological data. Environ Model Softw. 2013;48:163–70.CrossRefGoogle Scholar
  2. 2.
    Merchant A, Kumar M, Ravindra P, Vyas P, Manohar U. Analytics driven water management system for Bangalore city. Procedia Eng. 2014;70:1137–46.CrossRefGoogle Scholar
  3. 3.
    Dykes J, Mountain D. Seeking structure in records of spatio-temporal behaviour: visualization issues, efforts and applications. Comput Stat Data Anal. 2003;43(4):581–603. Data visualization. Available:
  4. 4.
    Demir I, Krajewski WF. Towards an integrated flood information system: centralized data access, analysis, and visualization. Environ Model Softw. 2013;50:77–84.CrossRefGoogle Scholar
  5. 5.
    Sui D, Maggio R. Integrating GIS with hydrological modeling: practices, problems, and prospects. Comput Environ Urban Syst. 1999;23(1):33–51.CrossRefGoogle Scholar
  6. 6.
    Acreman M. Principles of water management for people and the environment. 1998.Google Scholar
  7. 7.
    Damle C, Yalcin A. Flood prediction using time series data mining. J Hydrol. 2007;333(2):305–16.CrossRefGoogle Scholar
  8. 8.
    Imrie C, Durucan S, Korre A. River flow prediction using artificial neural networks: generalisation beyond the calibration range. J Hydrol. 2000;233(1):138–53.CrossRefGoogle Scholar
  9. 9.
    Toth E, Brath A, Montanari A. Comparison of short-term rainfall prediction models for real-time flood forecasting. J Hydrol. 2000;239(1):132–47.CrossRefGoogle Scholar
  10. 10.
    Qi H, Altinakar M. A GIS-based decision support system for integrated flood management under uncertainty with two dimensional numerical simulations. Environ Model Softw. 2011;26(6):817–21.CrossRefGoogle Scholar
  11. 11.
    Vondrak I, Martinovic J, Kozusznik J, Stolfa S, Kozubek T, Kubicek P, Vondrak V, Unucka J. A description of a highly modular system for the emergent flood prediction. In: Computer Information Systems and Industrial Management Applications (CISIM). New York: IEEE; 2008. p. 219–24.Google Scholar
  12. 12.
    Li Y, Guo Y, Yu G. An analysis of extreme flood events during the past 400 years at Taihu Lake, China. J Hydrol. 2013;500:217–225.CrossRefGoogle Scholar
  13. 13.
    Tehrany MS, Pradhan B, Jebur MN. Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J Hydrol. 2013;504:69–79.CrossRefGoogle Scholar
  14. 14.
    Ware C. Information visualization: perception for design. San Francisco: Morgan Kaufmann Publishers Inc.; 2004.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mahshid Marbouti
    • 1
    Email author
  • Rahul Bhaskar
    • 1
  • Zahra Shakeri Hossein Abad
    • 1
  • Craig Anslow
    • 1
  • Leland Jackson
    • 2
  • Frank Maurer
    • 1
  1. 1.Department of Computer ScienceUniversity of CalgaryCalgaryCanada
  2. 2.Department of Biological SciencesUniversity of CalgaryCalgaryCanada

Personalised recommendations