Skip to main content

A Parametrized Analysis of Algorithms on Hierarchical Graphs

  • Conference paper
  • First Online:
Descriptional Complexity of Formal Systems (DCFS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10316))

Included in the following conference series:

  • 324 Accesses

Abstract

Hierarchical graphs are used in order to describe systems with a sequential composition of sub-systems. A hierarchical graph consists of a vector of subgraphs. Vertices in a subgraph may “call” other subgraphs. The reuse of subgraphs, possibly in a nested way, causes hierarchical graphs to be exponentially more succinct than equivalent flat graphs. Early research on hierarchical graphs and the computational price of their succinctness suggests that there is no strong correlation between the complexity of problems when applied to flat graphs and their complexity in the hierarchical setting. That is, the complexity in the hierarchical setting is higher, but all “jumps” in complexity up to an exponential one are exhibited, including no jumps in some problems.

We continue the study of the complexity of algorithms for hierarchical graphs, with the following contributions: (1) In many applications, the subgraphs have a small, often a constant, number of exit vertices, namely vertices from which control returns to the calling subgraph. We offer a parameterized analysis of the complexity and point to problems where the complexity becomes lower when the number of exit vertices is bounded by a constant. (2) We describe a general methodology for algorithms on hierarchical graphs. The methodology is based on an iterative compression of subgraphs in a way that maintains the solution to the problems and results in subgraphs whose size depends only on the number of exit vertices, and (3) We handle labeled hierarchical graphs, where edges are labeled by letters from some alphabet, and the problems refer to the languages of the graphs.

The research leading to these results has received funding from the European Research Council under the European Union’s 7th Framework Programme (FP7/2007-2013, ERC grant no. 278410).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alur, R., Kannan, S., Yannakakis, M.: Communicating hierarchical state machines. In: Wiedermann, J., Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 169–178. Springer, Heidelberg (1999). doi:10.1007/3-540-48523-6_14

    Chapter  Google Scholar 

  2. Alur, R., Yannakakis, M.: Model checking of hierarchical state machines. ACM TOPLAS 23(3), 273–303 (2001)

    Article  Google Scholar 

  3. Aminof, B., Kupferman, O., Murano, A.: Improved model checking of hierarchical systems. Inf. Comput. 210, 68–86 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barrett, C., Jacob, R., Marathe, M.: Formal-language-constrained path problems. SIAM J. Comput. 30(3), 809–837 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)

    Google Scholar 

  6. de Roever, W.-P.: The need for compositional proof systems: a survey. In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp. 1–22. Springer, Heidelberg (1998). doi:10.1007/3-540-49213-5_1

    Chapter  Google Scholar 

  7. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  8. Drusinsky, D., Harel, D.: On the power of bounded concurrency I: finite automata. J. ACM 41(3), 517–539 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8(3), 399–404 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  10. Galperin, H., Wigderson, A.: Succinct representations of graphs. Inf. Control 56(3), 183–198 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harel, D., Kupferman, O., Vardi, M.Y.: On the complexity of verifying concurrent transition systems. Inf. Comput. 173, 1–19 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Immerman, N.: Length of predicate calculus formulas as a new complexity measure. In: Proceedings of 20th FOCS, pp. 337–347 (1979)

    Google Scholar 

  13. Kupferman, O., Tamir, T.: Hierarchical network formation games. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 229–246. Springer, Heidelberg (2017). doi:10.1007/978-3-662-54577-5_13

    Chapter  Google Scholar 

  14. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-time model checking. J. ACM 47(2), 312–360 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lengauer, T.: The complexity of compacting hierarchically specified layouts of integrated circuits. In: Proceedings of 23rd FOCS, pp. 358–368 (1982)

    Google Scholar 

  16. Lengauer, T., Wagner, K.W.: The correlation between the complexities of the nonhierarchical and hierarchical versions of graph problems. JCSS 44, 63–93 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Lengauer, T., Wanke, E.: Efficient solutions of connectivity problems on hierarchically defined graphs. SIAM J. Comput. 17(6), 1063–1081 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Megiddo, N.: Optimal flows in networks with multiple sources and sinks. Math. Program. 7(1), 97–107 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases. SIAM J. Comput. 24(6), 1235–1258 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rothvoß, T.: The matching polytope has exponential extension complexity. In: Proceedings of 46th STOC, pp. 263–272 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Faran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 IFIP International Federation for Information Processing

About this paper

Cite this paper

Faran, R., Kupferman, O. (2017). A Parametrized Analysis of Algorithms on Hierarchical Graphs. In: Pighizzini, G., Câmpeanu, C. (eds) Descriptional Complexity of Formal Systems. DCFS 2017. Lecture Notes in Computer Science(), vol 10316. Springer, Cham. https://doi.org/10.1007/978-3-319-60252-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60252-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60251-6

  • Online ISBN: 978-3-319-60252-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics