Spread of Pathogens in the Patient Transfer Network of US Hospitals

  • Juan Fernández-GraciaEmail author
  • Jukka-Pekka Onnela
  • Michael L. Barnett
  • Víctor M. Eguíluz
  • Nicholas A. Christakis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10354)


Antibiotic-resistant organisms, an increasing source of morbidity and mortality, have a natural reservoir in hospitals, and recent estimates suggest that almost 2 million people develop hospital-acquired infections each year in the US alone. We investigate the temporal network of transfers of Medicare patients across US hospitals over a 2-year period to learn about the possible role of hospital-to-hospital transfers of patients in the spread of infections. We analyze temporal, geographical, and topological properties of the transfer network and show that this network may serve as a substrate for the spread of infections. Finally, we study different strategies for the early detection of incipient epidemics on the temporal transfer network as a function of activation time of a subset of sensor hospitals. We find that using approximately 2% of hospitals as sensors, chosen based on their network in-degree, with an activation time of 7 days results in optimal performance for this early warning system, enabling the early detection of 80% of the C. difficile. cases with the hospitals in the sensor set activated for only a fraction of 40% of the time.


Nosocomial Infection Medicare Patient Temporal Network Patient Transfer Network Neighbor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Laurie Meneades for the expert assistance required to build the dataset. JFG and JPO are joint first authors of this article.


  1. 1.
    Zimlichman, E., Henderson, D., Tamir, O., et al.: Health care-associated infections: a meta-analysis of costs and financial impact on the US health care system. JAMA Intern. Med. 173(22), 2039–2046 (2013)CrossRefGoogle Scholar
  2. 2.
    Threat Report 2013-Antimicrobial Resistance - CDC.
  3. 3.
    Klevens, R.M., Edwards, J.R., Richards, C.L., et al.: Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Publ. Health Rep. 122(2), 160–166 (2007)CrossRefGoogle Scholar
  4. 4.
    Infectious Diseases Society of America (IDSA): Combating antimicrobial resistance: policy recommendations to save lives. Clin. Infect. Dis. 52(S5) (2011)Google Scholar
  5. 5.
    Roberts, R.R., Hota, B., Ahmad, I., et al.: Hospital and societal costs of antimicrobial-resistant infections in a Chicago teaching hospital: implications for antibiotic stewardship. Clin. Infect. Dis. 49(8), 1175–1184 (2009)CrossRefGoogle Scholar
  6. 6.
    Mauldin, P.D., Salgado, C.D., Hansen, I.S., Durup, D.T., Bosso, J.A.: Attributable hospital cost and length of stay associated with health care-associated infections caused by antibiotic-resistant gram-negative bacteria. Antimicrob. Agents Chemother. 54(1), 109–115 (2010)CrossRefGoogle Scholar
  7. 7.
    Filice, G.A., Nyman, J.A., Lexau, C., et al.: Excess costs and utilization associated with methicillin resistance for patients with Staphylococcus aureus infection. Infect. Control Hosp. Epidemiol. 31(4), 365–373 (2010)CrossRefGoogle Scholar
  8. 8.
    Karkada, U.H., Adamic, L.A., Kahn, J.M., Iwashyna, T.J.: Limiting the spread of highly resistant hospital-acquired microorganisms via critical care transfers: a simulation study. Intensive Care Med. 37(10), 1633–1640 (2011)CrossRefGoogle Scholar
  9. 9.
    Iwashyna, T.J., Christie, J.D., Kahn, J.M., Asch, D.A.: Uncharted paths: hospital networks in critical care. Chest 135(3), 827–833 (2009)CrossRefGoogle Scholar
  10. 10.
    Iwashyna, T.J., Christie, J.D., Moody, J., Kahn, J.M., Asch, D.A.: The structure of critical care transfer networks. Med. Care 47(7), 787–793 (2009)CrossRefGoogle Scholar
  11. 11.
    Unnikrishnan, K.P., Patnaik, D., Iwashyna, T.J.: Spatio-temporal structure of US critical care transfer network. AMIA Summits Transl. Sci. Proc. 2011, 74–78 (2011)Google Scholar
  12. 12.
    Lee, B.Y., McGlone, S.M., Song, Y., et al.: Social network analysis of patient sharing among hospitals in Orange County. California. Am. J. Public Health 101(4), 707–713 (2011)CrossRefGoogle Scholar
  13. 13.
    Lee, B.Y., McGlone, S.M., Wong, K.F., et al.: Modeling the spread ofMethicillin-Resistant Staphylococcus Aureus (MRSA) outbreaks throughout the hospitals in Orange County. California. Infect. Control Hosp. Epidemiol. 32(6), 562–572 (2011)CrossRefGoogle Scholar
  14. 14.
    Huang, S.S., Avery, T.R., Song, Y., et al.: Quantifying interhospital patient sharing as a mechanism for infectious disease spread. Infect. Control Hosp. Epidemiol. 31(11), 1160–1169 (2010)CrossRefGoogle Scholar
  15. 15.
    Obadia, T., Silhol, R., Opatowski, L., Temime, L., Legrand, J., et al.: Detailed contact data and the dissemination of Staphylococcus aureus in hospitals. PLoS Comput. Biol. 11(3), e1004170 (2015)CrossRefGoogle Scholar
  16. 16.
    Isella, L., Romano, M., Barrat, A., Cattuto, C., Colizza, V., Van den Broeck, W., Gesualdo, F., Pandolfi, E., Rav, L., Rizzo, C., Tozzi, A.E.: Close encounters in a pediatric ward: measuring face-to-face proximity and mixing patterns with wearable sensors. PLoS ONE 6(2), e17144 (2011)CrossRefGoogle Scholar
  17. 17.
    Medicare beneficiaries as a percent of total population.
  18. 18.
    Overview of hospital stays in the United States (2010).
  19. 19.
    American Hospital Association.
  20. 20.
    Gerding, D.N., Johnson, S.: Harrisons principles of internal medicine. In: Fauci, A.S., Braunwald, E., Kasper, D.L., et al. (eds.) 17th Editi. McGraw-Hill, New York (2008)Google Scholar
  21. 21.
    Bajardi, P., Barrat, A., Savini, L., Colizza, V.: Optimizing surveillance for livestock disease spreading through animal movements. J. R. Soc. Interface 9(76), 2814–2825 (2012)CrossRefGoogle Scholar
  22. 22.
    Schmiedeskamp, M., Harpe, S., Polk, R., Oinonen, M., Pakyz, A.: Use of international classification of diseases, ninth revision, clinical modification codes and medication use data to identify nosocomial clostridium difficile infection. Infect. Control Hosp. Epidemiol. 30(11), 1070–1076 (2009)CrossRefGoogle Scholar
  23. 23.
    Scheurer, D.B., Hicks, L.S., Cook, E.F., Schnipper, J.L.: Accuracy of ICD-9 coding for Clostridium difficile infections: a retrospective cohort. Epidemiol. Infect. 135(6), 1010–1013 (2007)CrossRefGoogle Scholar
  24. 24.
    Dubberke, E.R., Butler, A.M., Yokoe, D.S., et al.: Multicenter study of surveillance for hospital-onset Clostridium difficile infection by the use of ICD-9-CM diagnosis codes. Infect. Control Hosp. Epidemiol. 31(3), 262–268 (2010)CrossRefGoogle Scholar
  25. 25.
    Fisher, R.A.: Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10(4), 507–521 (1915)Google Scholar
  26. 26.
    Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64(2), 026118 (2001)CrossRefGoogle Scholar
  27. 27.
    Newman, M.: Assortative mixing in networks. Phys. Rev. Lett. 89(20), 208701 (2002)CrossRefGoogle Scholar
  28. 28.
    Newman, M.: Mixing patterns in networks. Phys. Rev. E 67(2), 026126 (2003)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, chap. 16. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  30. 30.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Science 220, 671–680 (1983)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Juan Fernández-Gracia
    • 1
    • 2
    Email author
  • Jukka-Pekka Onnela
    • 3
  • Michael L. Barnett
    • 3
  • Víctor M. Eguíluz
    • 2
  • Nicholas A. Christakis
    • 4
  1. 1.Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonUSA
  2. 2.Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB)PalmaSpain
  3. 3.Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonUSA
  4. 4.Yale Institute for Network ScienceYale UniversityNew HavenUSA

Personalised recommendations