Learning Network Dynamics from Tumblr®: A Search for Influential Users

  • Steven MunnEmail author
  • Kang-Yu Ni
  • Jiejun Xu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10354)


This work offers an original analysis of a unique data set gathered from the blogging website Tumblr by developing and applying a new data driven method for investigating network dynamics. To our knowledge, this is the first effort to analyze the spread of information on Tumblr on a such a large scale, and our method generally applies to networks where nodes have time-evolving states. We start by testing our method on simulated data, then we follow over 50,000 blogs on Tumblr over a year of activity to determine not only which blogs are influential, but more importantly, how these blogs spread their content.


Tumblr Dictionary learning Social networks Influence maximization Non-negative matrix factorization 


  1. 1.
    Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech.: Theory Exp. 2008(10), P10008 (2008). CrossRefGoogle Scholar
  2. 2.
    Boutsidis, C., Gallopoulos, E.: SVD based initialization: a head start for nonnegative matrix factorization. Pattern Recogn. 41(4), 1350–1362 (2008). CrossRefzbMATHGoogle Scholar
  3. 3.
    Coifman, R.R., Maggioni, M.: Diffusion wavelets. Appl. Comput. Harmon. Anal. 21(1), 53–94 (2006). MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Crovella, M., Kolaczyk, E.: Graph wavelets for spatial traffic analysis. In: IEEE INFOCOM 2003. 22nd Annual Joint Conference of IEEE Computer and Communications Societies (IEEE Cat. No. 03CH37428). Institute of Electrical and Electronics Engineers (IEEE) (2003).
  5. 5.
    Grady, L.J., Polimeni, J.R.: Discrete Calculus. Springer, London (2010). NatureCrossRefzbMATHGoogle Scholar
  6. 6.
    Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 30(2), 129–150 (2011). MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5(November), 1457–1469 (2004)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 2003. Association for Computing Machinery (ACM) (2003).
  9. 9.
    Lin, C.J.: Projected gradient methods for nonnegative matrix factorization. Neural Comput. 19(10), 2756–2779 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Newman, M.E.J.: The Structure and Dynamics of Networks. Princeton University Press, Princeton (2006)Google Scholar
  11. 11.
    Rodriguez, M.G., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence. In: Proceedings of 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 2010. Association for Computing Machinery (ACM) (2010).
  12. 12.
    Sandryhaila, A., Moura, J.M.F.: Discrete signal processing on graphs. IEEE Trans. Signal Process. 61(7), 1644–1656 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30(3), 83–98 (2013). 2012.2235192 CrossRefGoogle Scholar
  14. 14.
    Tosic, I., Frossard, P.: Dictionary learning. IEEE Signal Process. Mag. 28(2), 27–38 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of California Santa BarbaraSanta BarbaraUSA
  2. 2.HRL LaboratoriesMalibuUSA

Personalised recommendations