Skip to main content

How to Make Two Balls from One

  • Chapter
  • First Online:
  • 2864 Accesses

Part of the book series: Springer Monographs in Mathematics ((SMM))

Abstract

For two reasons we shall give the reader a rest: one reason is that the reader deserves a pause to reflect on the axioms of ZFC; the other reason is that we would like to show Robinson ’s beautiful construction—relying on AC—of how to make two balls from one by dividing the ball into only five parts.

Rests, which are so convenient to the composer and singer, arose for two reasons: necessity and the desire for ornamentation. As for necessity, it would be impossible to sing an entire composition without pausing, for it would cause fatigue that might well prevent a singer from finishing. Rests were adopted also for the sake of ornament. With them parts could enter one after another in fugue or consequence, procedures that give a composition an artful and pleasing effect.

Gioseffo Zarlino

Le Istitutioni Harmoniche, 1558

This is a preview of subscription content, log in via an institution.

References

  1. Stefan Banach, Sur le problème de la mesure, Fundamenta Mathematicae, vol. 4 (1923), 7–33.

    Google Scholar 

  2. Stefan Banach and Alfred Tarski, Sur la décomposition des ensembles de points en parties respectivement congruentes, Fundamenta Mathematicae, vol. 6 (1924), 244–277.

    Google Scholar 

  3. Felix Hausdorff, Bemerkungen über den Inhalt von Punktmengen, Mathematische Annalen, vol. 75 (1914), 428–433.

    Google Scholar 

  4. ——, Grundzüge der Mengenlehre, de Gruyter, Leipzig, 1914 [reprint: Chelsea, New York, 1965].

    Google Scholar 

  5. ——, Gesammelte Werke, Band IV: Analysis, Algebra und Zahlentheorie, Springer-Verlag, Berlin, 2001.

    Google Scholar 

  6. Miklós Laczkovich, Equidecomposability and discrepancy; a solution of Tarski’s circle-squaring problem, Journal für die Reine und Angewandte Mathematik, vol. 404 (1990), 77–117.

    Google Scholar 

  7. ——, Paradoxical decompositions: A survey of recent results, First European Congress of Mathematics Paris, July 6–10, 1992, Vol. II (A. Joseph, F. Mignot, F. Murat, B. Prum, and R. Rentschler, eds.), [Progress in Mathematics 120], Birkhäuser, Basel, 1994, pp. 159–184.

    Google Scholar 

  8. John von Neumann, Zur allgemeinen Theorie des Masses, Fundamenta Mathematicae, vol. 13 (1929), 73–116.

    Google Scholar 

  9. Jean Raisonnier, A mathematical proof of S. Shelah’s theorem on the measure problem and related results, Israel Journal of Mathematics, vol. 48 (1984), 48–56.

    Google Scholar 

  10. Raphael M. Robinson, On the decomposition of spheres, Fundamenta Mathematicae, vol. 34 (1947), 246–260.

    Google Scholar 

  11. Saharon Shelah, Can you take Solovay’s inaccessible away?, Israel Journal of Mathematics, vol. 48 (1984), 1–47.

    Google Scholar 

  12. Wacław Sierpiński, Sur le paradoxe de la sphère, Fundamenta Mathematicae, vol. 33 (1945), 235–244.

    Google Scholar 

  13. ——, Sur le paradoxe de MM. Banach et Tarski, Fundamenta Mathematicae, vol. 33 (1945), 228–234.

    Google Scholar 

  14. ——, Sur un paradoxe de M. J. von Neumann, Fundamenta Mathematicae, vol. 35 (1948), 203–207.

    Google Scholar 

  15. ——, On the congruence of sets and their equivalence by finite decomposition, [Lucknow University Studies, no. xx], The Lucknow University, Lucknow, 1954 (reprinted in [16]).

    Google Scholar 

  16. Wacław Sierpiński  et al., On the Congruence of Sets and Other Monographs, Chelsea Publishing Company, Bronx, New York, 1960.

    Google Scholar 

  17. Robert M. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Annals of Mathematics (2), vol. 92 (1970), 1–56.

    Google Scholar 

  18. Stan Wagon, The Banach-Tarski Paradox, [Encyclopedia of Mathematics and its Applications 24], Cambridge University Press, Cambridge, 1985, With a foreword by Jan Mycielski.

    Google Scholar 

  19. Leonard M. Wapner, The Pea and the Sun: a mathematical paradox, A. K. Peters, Wellesley, 2007.

    Google Scholar 

  20. Trevor M. Wilson, A continuous movement version of the Banach-Tarski Paradox: A solution to de Groot’s problem, The Journal of Symbolic Logic, vol. 70 (2005), 946–952.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Halbeisen, L.J. (2017). How to Make Two Balls from One. In: Combinatorial Set Theory. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-60231-8_7

Download citation

Publish with us

Policies and ethics