Skip to main content

Spatial Ensemble Learning

  • Chapter
  • First Online:
Book cover Spatial Big Data Science
  • 1997 Accesses

Abstract

This chapter introduces a novel ensemble learning framework called spatial ensemble, which is used to classify heterogeneous spatial data with class ambiguity. Class ambiguity refers to the phenomenon whereby samples with similar features belong to different classes at different locations (e.g., spectral confusion between different thematic classes in earth observation imagery). This chapter also provides preliminary results of comparison between spatial ensemble and traditional ensemble learning (e.g., bagging, boosting, and random forest) on wetland mapping datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.K. Ho, M. Basu, Complexity measures of supervised classification problems. IEEE Trans. Pattern Anal. Mach. Intel. 24(3), 289–300 (2002)

    Article  Google Scholar 

  2. T.K. Ho, M. Basu, M.H.C. Law, Measures of geometrical complexity in classification problems, in Data Complexity in Pattern Recognition (Springer, 2006), pp. 1–23

    Google Scholar 

  3. A.S. Fotheringham, C. Brunsdon, M. Charlton, in Geographically Weighted Regression: The Analysis of Spatially Varying Relationships (Wiley, 2003)

    Google Scholar 

  4. B. Pease, A. Pease, in The Definitive Book of Body Language (Bantam, 2006)

    Google Scholar 

  5. T.G. Dietterich, Ensemble methods in machine learning, in Multiple Classifier Systems (Springer, 2000), pp. 1–15

    Google Scholar 

  6. Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms (CRC Press, 2012)

    Google Scholar 

  7. Y. Ren, L. Zhang, P. Suganthan, Ensemble classification and regression-recent developments, applications and future directions [review article]. Comput. Intel. Mag. IEEE 11(1), 41–53 (2016)

    Article  Google Scholar 

  8. L. Breiman, Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  9. Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Breiman, Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  11. R.A. Jacobs, M.I. Jordan, S.J. Nowlan, G.E. Hinton, Adaptive mixtures of local experts. Neural Comput. 3(1), 79–87 (1991)

    Article  Google Scholar 

  12. S.E. Yuksel, J.N. Wilson, P.D. Gader, Twenty years of mixture of experts. IEEE Trans. Neural Netw. Learn. Syst. 23(8), 1177–1193 (2012)

    Article  Google Scholar 

  13. A. Karpatne, A. Khandelwal, V. Kumar, Ensemble learning methods for binary classification with multi-modality within the classes, in Proceedings of the 2015 SIAM International Conference on Data Mining, Vancouver, BC, Canada, April 30 - May 2, 2015 (SIAM, 2015), pp. 730–738

    Google Scholar 

  14. L. Xu, M.I. Jordan, G.E. Hinton, An alternative model for mixtures of experts, in Advances in Neural Information Processing Systems (1995), pp. 633–640

    Google Scholar 

  15. V. Ramamurti, J. Ghosh, Advances in using hierarchical mixture of experts for signal classification, in 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings, vol. 6 (IEEE, 1996), pp. 3569–3572

    Google Scholar 

  16. G. Jun, J. Ghosh, Semisupervised learning of hyperspectral data with unknown land-cover classes. IEEE Trans. Geosci. Rem. Sens. 51(1), 273–282 (2013)

    Article  Google Scholar 

  17. A.R. Gonçalves, F.J. Von Zuben, A. Banerjee, Multi-label structure learning with ising model selection, in Proceedings of the 24th International Conference on Artificial Intelligence (AAAI Press, 2015), pp. 3525–3531

    Google Scholar 

  18. M. Szummer, R.W. Picard, Indoor-outdoor image classification, in Proceedings of the 1998 IEEE International Workshop on Content-Based Access of Image and Video Database, 1998 (IEEE, 1998), pp. 42–51

    Google Scholar 

  19. Z. Jiang, S. Shekhar, A. Kamzin, J. Knight, Learning a spatial ensemble of classifiers for raster classification: A summary of results, in 2014 IEEE International Conference on Data Mining Workshop (ICDMW) (IEEE, 2014), pp. 15–18

    Google Scholar 

  20. M. Fauvel, Y. Tarabalka, J.A. Benediktsson, J. Chanussot, J.C. Tilton, Advances in spectral-spatial classification of hyperspectral images. Proc. IEEE 101(3), 652–675 (2013)

    Article  Google Scholar 

  21. D. Lu, Q. Weng, A survey of image classification methods and techniques for improving classification performance. Int. J. Rem. Sens. 28(5), 823–870 (2007)

    Article  Google Scholar 

  22. J. Dong, W. Xia, Q. Chen, J. Feng, Z. Huang, S. Yan, Subcategory-aware object classification, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2013), pp. 827–834

    Google Scholar 

  23. W.R. Tobler, A computer movie simulating urban growth in the detroit region. Econ. Geogr. 46, 234–240 (1970)

    Article  Google Scholar 

  24. R.M. Haralick, L.G. Shapiro, Image segmentation techniques, in 1985 Technical Symposium East. International Society for Optics and Photonics (1985), pp. 2–9

    Google Scholar 

  25. Weka 3: Data mining software in java (2016), http://www.cs.waikato.ac.nz/ml/weka/

  26. D.R. Martin, C.C. Fowlkes, Matlab codes for multi-class hierarchical mixture of experts model (2002), http://www.ics.uci.edu/~fowlkes/software/hme/

  27. L.P. Rampi, J.F. Knight, K.C. Pelletier, Wetland mapping in the upper midwest united states. Photogram. Eng. Rem. Sens. 80(5), 439–448 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Jiang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jiang, Z., Shekhar, S. (2017). Spatial Ensemble Learning. In: Spatial Big Data Science. Springer, Cham. https://doi.org/10.1007/978-3-319-60195-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60195-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60194-6

  • Online ISBN: 978-3-319-60195-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics