Skip to main content

Focal-Test-Based Spatial Decision Tree

  • Chapter
  • First Online:
  • 1938 Accesses

Abstract

This chapter introduces another spatial classification technique called focal-test-based spatial decision tree (FTSDT), in which the tree traversal direction of a sample is based on both local information and focal (neighborhood) information. We also provide comparisons of FTSDT with existing decision trees and spatial decision trees on real-world wetland mapping data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.R. Quinlan, in C4.5: Programs for Machine Learning. (Morgan kaufmann, 1993)

    Google Scholar 

  2. Z. Jiang, S. Shekhar, P. Mohan, J. Knight, J. Corcoran, Learning spatial decision tree for geographical classification: a summary of results. in SIGSPATIAL/GIS, (2012), pp. 390–393

    Google Scholar 

  3. M.A. Friedl, C.E. Brodley, Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 61(3), 399–409 (1997)

    Article  Google Scholar 

  4. J.M. Corcoran, J.F. Knight, A.L. Gallant, Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of random forest classification of wetlands in northern minnesota. Remote Sens. 5(7), 3212–3238 (2013)

    Article  Google Scholar 

  5. J.F. Knight, B.P. Tolcser, J.M. Corcoran, L.P. Rampi, The effects of data selection and thematic detail on the accuracy of high spatial resolution wetland classifications. Photogram. Eng. Remote Sens. 79(7), 613–623 (2013)

    Google Scholar 

  6. B. Walsh, How wetlands worsen climate change, http://www.time.com/time/health/article/0,8599,1953751,00.html (2010)

  7. A. Deschamps, D. Greenlee, T. Pultz, R. Saper, Geospatial data integration for applications in flood prediction and management in the red river basin. in International Geoscience and Remote Sensing Symposium, Toronto, Canada. Symposium, Geomatics in the Era of RADARSAT (GER’97), (Ottawa, Canada, 2002)

    Google Scholar 

  8. R. Hearne, Evolving water management institutions in the red river basin. Environ. Manag. 40(6), 842–852 (2007). Springer

    Google Scholar 

  9. C. Van Westen, Remote sensing for natural disaster management. Int. Arch. Photogr. Remote Sens. 33(B7/4; PART 7), 1609–1617 (2000)

    Google Scholar 

  10. A. Akselrod-Ballin, M. Galun, R. Basri, A. Brandt, M. Gomori, M. Filippi, P. Valsasina, An integrated segmentation and classification approach applied to multiple sclerosis analysis. in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol 1, (IEEE, 2006), pp. 1122–1129

    Google Scholar 

  11. M. Celebi, H. Kingravi, Y. Aslandogan, W. Stoecker, Detection of blue-white veil areas in dermoscopy images using machine learning techniques. in Proceedings of SPIE Vol, vol 6144, (Citeseer, 2006), pp. 61445T–1

    Google Scholar 

  12. D. Bazell, D.W. Aha, Ensembles of classifiers for morphological galaxy classification. Astrophys. J. 548(1), 219 (2001)

    Article  Google Scholar 

  13. T. Yuan, W. Kuo, Spatial defect pattern recognition on semiconductor wafers using model-based clustering and bayesian inference. Eur. J. Oper. Res. 190(1), 228–240 (2008)

    Article  MATH  Google Scholar 

  14. J. Quinlan, Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986). Springer

    Google Scholar 

  15. L. Breiman, J. Friedman, C.J. Stone, R.A. Olshen, in Classification and Regression Trees. (Chapman & Hall/CRC, 1984)

    Google Scholar 

  16. X. Li, C. Claramunt, A spatial Entropy-Based decision tree for classification of geographical information. in Transactions in GIS, vol 10(3), (Blackwell Publishing Ltd., 2006), pp. 451–467

    Google Scholar 

  17. D. Stojanova, M. Ceci, A. Appice, D. Malerba, S. Džeroski, Global and local spatial autocorrelation in predictive clustering trees. in Discovery Science, (Springer, 2011), pp. 307–322

    Google Scholar 

  18. D. Stojanova, M. Ceci, A. Appice, D. Malerba, S. Dzeroski, Dealing with Spatial Autocorrelation when Learning Predictive Clustering Trees (Elsevier, Ecological Informatics, 2012)

    MATH  Google Scholar 

  19. Z. Jiang, S. Shekhar, X. Zhou, J. Knight, J. Corcoran, Focal-test-based spatial decision tree learning: a summary of result. in 2013 IEEE 13th International Conference on Data Mining (ICDM), (IEEE, 2013)

    Google Scholar 

  20. Z. Jiang, Learning spatial decision trees for land cover mapping. in 2015 IEEE International Conference on Data Mining Workshop (ICDMW), (IEEE, 2015), pp. 1522–1529

    Google Scholar 

  21. Z. Jiang, S. Shekhar, X. Zhou, J. Knight, J. Corcoran, in Focal-test-based Spatial Decision Tree Learning. IEEE Transactions on Knowledge and Data Engineering, (2015)

    Google Scholar 

  22. A.H. Solberg, T. Taxt, A.K. Jain, A markov random field model for classification of multisource satellite imagery. IEEE Trans. Geosci. Remote Sens. 34(1), 100–113 (1996)

    Article  Google Scholar 

  23. M. Celik, B.M. Kazar, S. Shekhar, D. Boley, D.J. Lilja, Spatial dependency modeling using spatial auto-regression. in Workshop on Geospatial Analysis and Modeling with Geoinformation Connecting Societies (GICON), International Cartography Association (ICA), (2006)

    Google Scholar 

  24. C. Boncelet, Image noise models. ed. by A.C. Bovik, in Handbook of Image and Video Processing, Chap. 4.5., 2nd edn. (Academic Press, 2005)

    Google Scholar 

  25. L. Anselin, Local indicators of spatial association–lisa. Geograph. Anal. 27(2), 93–115 (1995)

    Article  Google Scholar 

  26. R.G. Congalton, A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37(1), 35–46 (1991)

    Article  Google Scholar 

  27. J.D. Bossler, J.R. Jensen, R.B. McMaster, C. Rizos, in Manual of Geospatial Science and Technology, (CRC Press, 2004)

    Google Scholar 

  28. R.G. Congalton, K. Green, in Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, (CRC Press, 2008)

    Google Scholar 

  29. D. Brownrigg, The weighted median filter. Commun. ACM 27(8), 807–818 (1984)

    Article  Google Scholar 

  30. H. Hwang, R.A. Haddad, Adaptive median filters: new algorithms and results. IEEE Trans. Image Process. 4(4), 499–502 (1995)

    Article  Google Scholar 

  31. R.H. Chan, C.-W. Ho, M. Nikolova, Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Trans. Image Process. 14(10), 1479–1485 (2005)

    Article  Google Scholar 

  32. S. Esakkirajan, T. Veerakumar, A.N. Subramanyam, C. PremChand, Removal of high density salt and pepper noise through modified decision based unsymmetric trimmed median filter. Sig. Process. Lett. IEEE 18(5), 287–290 (2011)

    Article  Google Scholar 

  33. J. Wijnant, T. Steenberghen, Per-parcel classification of urban ikonos imagery. in Proceedings of 7th AGILE Conference on Geographic Information Science, (2004), pp. 447–455

    Google Scholar 

  34. Y. Tarabalka, J.A. Benediktsson, J. Chanussot, Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Trans. Geosci. Remote Sens. 47(8), 2973–2987 (2009)

    Article  Google Scholar 

  35. A. Puissant, J. Hirsch, C. Weber, The utility of texture analysis to improve per-pixel classification for high to very high spatial resolution imagery. Int. J. Remote Sens. 26(4), 733–745 (2005)

    Article  Google Scholar 

  36. G. Hay G. Castilla, Geographic object-based image analysis (geobia): A new name for a new discipline. in Object-based Image Analysis, (Springer, 2008), pp. 75–89

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Jiang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jiang, Z., Shekhar, S. (2017). Focal-Test-Based Spatial Decision Tree. In: Spatial Big Data Science. Springer, Cham. https://doi.org/10.1007/978-3-319-60195-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60195-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60194-6

  • Online ISBN: 978-3-319-60195-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics