Advertisement

Occupational Metal Exposure and Parkinsonism

  • W. Michael CaudleEmail author
Chapter
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 18)

Abstract

Parkinsonism is comprised of a host of neurological disorders with an underlying clinical feature of movement disorder, which includes many shared features of bradykinesia, tremor, and rigidity. These clinical outcomes occur subsequent to pathological deficits focused on degeneration or dysfunction of the nigrostriatal dopamine system and accompanying pathological inclusions of alpha-synuclein and tau. The heterogeneity of parkinsonism is equally matched with the complex etiology of this syndrome. While a small percentage can be attributed to genetic alterations, the majority arise from an environmental exposure, generally composed of pesticides, industrial compounds, as well as metals. Of these, metals have received significant attention given their propensity to accumulate in the basal ganglia and participate in neurotoxic cascades, through the generation of reactive oxygen species as well as their pathogenic interaction with intracellular targets in the dopamine neuron. The association between metals and parkinsonism is of critical concern to subsets of the population that are occupationally exposed to metals, both through current practices, such as mining, and emerging settings, like E-waste and the manufacture of metal nanoparticles. This review will explore our current understanding of the molecular and pathological targets that mediate metal neurotoxicity and lead to parkinsonism and will highlight areas of critical research interests that need to be addressed.

Keywords

Copper E-Waste Iron Manganese Manganism Nanoparticles Parkinsonism 

References

  1. Asante KA, Agusa T, Biney CA, Agyekum WA, Bello M, Otsuka M, et al. Multi-trace element levels and arsenic speciation in urine of e-waste recycling workers from Agbogbloshie, Accra in Ghana. Sci Total Environ. 2012;424:63–73.CrossRefPubMedGoogle Scholar
  2. Ayton S, Lei P, Duce JA, Wong BX, Sedjahtera A, Adlard PA, et al. Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease. Ann Neurol. 2013;73(4):554–9.CrossRefPubMedGoogle Scholar
  3. Bandmann O, Weiss KH, Kaler SG. Wilson’s disease and other neurological copper disorders. Lancet Neurol. 2015;14(1):103–13.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barbeau A, Friesen H. Treatment of Wilson’s disease with L-dopa after failure with penicillamine. Lancet. 1970;1(7657):1180–1.CrossRefPubMedGoogle Scholar
  5. Barthel H, Hermann W, Kluge R, Hesse S, Collingridge DR, Wagner A, et al. Concordant pre- and postsynaptic deficits of dopaminergic neurotransmission in neurologic Wilson disease. AJNR Am J Neuroradiol. 2003;24(2):234–8.PubMedGoogle Scholar
  6. Bjorkblom B, Adilbayeva A, Maple-Grodem J, Piston D, Okvist M, Xu XM, et al. Parkinson disease protein DJ-1 binds metals and protects against metal-induced cytotoxicity. J Biol Chem. 2013;288(31):22809–20.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bouabid S, Tinakoua A, Lakhdar-Ghazal N, Benazzouz A. Manganese neurotoxicity: behavioral disorders associated with dysfunctions in the basal ganglia and neurochemical transmission. J Neurochem. 2015;Google Scholar
  8. Breivik K, Armitage JM, Wania F, Jones KC. Tracking the global generation and exports of e-waste. do existing estimates add up? Environ Sci Technol. 2014;48(15):8735–43.CrossRefPubMedGoogle Scholar
  9. Cai T, Yao T, Zheng G, Chen Y, Du K, Cao Y, et al. Manganese induces the overexpression of alpha-synuclein in PC12 cells via ERK activation. Brain Res. 2010;1359:201–7.CrossRefPubMedGoogle Scholar
  10. Carboni E, Lingor P. Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson’s disease. Metallomics Integ Biom Sci. 2015;7(3):395–404.CrossRefGoogle Scholar
  11. Caudle WM. Occupational exposures and parkinsonism. Handb Clin Neurol. 2015;131:225–39.CrossRefPubMedGoogle Scholar
  12. Caudle WM, Guillot TS, Lazo CR, Miller GW. Industrial toxicants and Parkinson’s disease. Neurotoxicology. 2012;33(2):178–88.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cohen G. Oxy-radical toxicity in catecholamine neurons. Neurotoxicology. 1984;5(1):77–82.PubMedGoogle Scholar
  14. Davies KM, Bohic S, Carmona A, Ortega R, Cottam V, Hare DJ, et al. Copper pathology in vulnerable brain regions in Parkinson’s disease. Neurobiol Aging. 2014;35(4):858–66.CrossRefPubMedGoogle Scholar
  15. Davies KM, Mercer JF, Chen N, Double KL. Copper dyshomoeostasis in Parkinson’s disease: implications for pathogenesis and indications for novel therapeutics. Clin Sci. 2016;130(8):565–74.CrossRefPubMedGoogle Scholar
  16. Dell’Acqua S, Pirota V, Monzani E, Camponeschi F, De Ricco R, Valensin D, et al. Copper(I) forms a redox-stable 1:2 complex with alpha-Synuclein N-terminal peptide in a membrane-like environment. Inorg Chem. 2016;55(12):6100–6.CrossRefPubMedGoogle Scholar
  17. DeWitt MR, Chen P, Aschner M. Manganese efflux in parkinsonism: insights from newly characterized SLC30A10 mutations. Biochem Biophys Res Commun. 2013;432(1):1–4.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE, et al. Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain J Neurol. 1991;114(Pt 4):1953–75.CrossRefGoogle Scholar
  19. Dickson DW. Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harb Perspect Med. 2012;2(8)Google Scholar
  20. Dickson DW, Rademakers R, Hutton ML. Progressive supranuclear palsy: pathology and genetics. Brain Pathol. 2007;17(1):74–82.CrossRefPubMedGoogle Scholar
  21. Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect. 2006;114(8):1172–8.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Erikson KM, Aschner M. Increased manganese uptake by primary astrocyte cultures with altered iron status is mediated primarily by divalent metal transporter. Neurotoxicology. 2006;27(1):125–30.CrossRefPubMedGoogle Scholar
  23. Fahn S. Description of Parkinson’s disease as a clinical syndrome. Ann N Y Acad Sci. 2003;991:1–14.CrossRefPubMedGoogle Scholar
  24. Feng X, Chen A, Zhang Y, Wang J, Shao L, Wei L. Central nervous system toxicity of metallic nanoparticles. Int J Nanomedicine. 2015;10:4321–40.PubMedPubMedCentralGoogle Scholar
  25. Gerlach M, Double KL, Youdim MB, Riederer P. Potential sources of increased iron in the substantia nigra of parkinsonian patients. J Neural Transm Suppl. 2006;70:133–42.CrossRefGoogle Scholar
  26. Gibbs JP, Crump KS, Houck DP, Warren PA, Mosley WS. Focused medical surveillance: a search for subclinical movement disorders in a cohort of U.S. workers exposed to low levels of manganese dust. Neurotoxicology. 1999;20(2–3):299–313.PubMedGoogle Scholar
  27. Gilman S, Low PA, Quinn N, Albanese A, Ben-Shlomo Y, Fowler CJ, et al. Consensus statement on the diagnosis of multiple system atrophy. J Neurol Sci. 1999;163(1):94–8.CrossRefPubMedGoogle Scholar
  28. Girotto S, Cendron L, Bisaglia M, Tessari I, Mammi S, Zanotti G, et al. DJ-1 is a copper chaperone acting on SOD1 activation. J Biol Chem. 2014;289(15):10887–99.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Golub MS, Hogrefe CE, Germann SL, Tran TT, Beard JL, Crinella FM, et al. Neurobehavioral evaluation of rhesus monkey infants fed cow’s milk formula, soy formula, or soy formula with added manganese. Neurotoxicol Teratol. 2005;27(4):615–27.CrossRefPubMedGoogle Scholar
  30. Gomes CM, Santos R. Neurodegeneration in Friedreich’s ataxia: from defective frataxin to oxidative stress. Oxidative Med Cell Longev. 2013;2013:487534.CrossRefGoogle Scholar
  31. Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Kortsha GX, Brown GG, et al. Occupational exposures to metals as risk factors for Parkinson’s disease. Neurology. 1997;48(3):650–8.CrossRefPubMedGoogle Scholar
  32. Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Kortsha GX, Brown GG, et al. Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson’s disease. Neurotoxicology. 1999a;20(2–3):239–47.PubMedGoogle Scholar
  33. Gorell JM, Rybicki BA, Cole Johnson C, Peterson EL. Occupational metal exposures and the risk of Parkinson’s disease. Neuroepidemiology. 1999b;18(6):303–8.CrossRefPubMedGoogle Scholar
  34. Graham DG, Tiffany SM, Bell WR Jr, Gutknecht WF. Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol Pharmacol. 1978;14(4):644–53.PubMedGoogle Scholar
  35. Guilarte TR. Manganese and Parkinson’s disease: a critical review and new findings. Environ Health Perspect. 2010;118(8):1071–80.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Guilarte TR. Manganese neurotoxicity: new perspectives from behavioral, neuroimaging, and neuropathological studies in humans and non-human primates. Front Aging Neurosci. 2013;5:23.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Guilarte TR, Gonzales KK. Manganese-induced parkinsonism is not idiopathic Parkinson’s disease: environmental and genetic evidence. Toxicolog Sci Off J Soc Toxicol. 2015;146(2):204–12.CrossRefGoogle Scholar
  38. Guilarte TR, Chen MK, McGlothan JL, Verina T, Wong DF, Zhou Y, et al. Nigrostriatal dopamine system dysfunction and subtle motor deficits in manganese-exposed non-human primates. Exp Neurol. 2006;202(2):381–90.CrossRefPubMedGoogle Scholar
  39. Hare DJ, Double KL. Iron and dopamine: a toxic couple. Brain J Neurol. 2016;139(Pt 4):1026–35.CrossRefGoogle Scholar
  40. Harris ED. Cellular copper transport and metabolism. Annu Rev Nutr. 2000;20:291–310.CrossRefPubMedGoogle Scholar
  41. Hatcher JM, Pennell KD, Miller GW. Parkinson’s disease and pesticides: a toxicological perspective. Trends Pharmacol Sci. 2008;29(6):322–9.CrossRefPubMedGoogle Scholar
  42. Heacock M, Kelly CB, Asante KA, Birnbaum LS, Bergman AL, Brune MN, et al. E-waste and harm to vulnerable populations: a growing global problem. Environ Health Perspect 2016;124(5):550–5.Google Scholar
  43. Hellman NE, Gitlin JD. Ceruloplasmin metabolism and function. Annu Rev Nutr. 2002;22:439–58.CrossRefPubMedGoogle Scholar
  44. Heusinkveld HJ, Wahle T, Campbell A, Westerink RH, Tran L, Johnston H, et al. Neurodegenerative and neurological disorders by small inhaled particles. Neurotoxicology. 2016;56:94–106.CrossRefPubMedGoogle Scholar
  45. Hitoshi S, Iwata M, Yoshikawa K. Mid-brain pathology of Wilson’s disease: MRI analysis of three cases. J Neurol Neurosurg Psychiatry. 1991;54(7):624–6.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Honarmand Ebrahimi K, Hagedoorn PL, Hagen WR. Unity in the biochemistry of the iron-storage proteins ferritin and bacterioferritin. Chem Rev. 2015;115(1):295–326.CrossRefPubMedGoogle Scholar
  47. Huang CC, Chu NS, Lu CS, Wang JD, Tsai JL, Tzeng JL, et al. Chronic manganese intoxication. Arch Neurol. 1989;46(10):1104–6.CrossRefPubMedGoogle Scholar
  48. Huang CC, Lu CS, Chu NS, Hochberg F, Lilienfeld D, Olanow W, et al. Progression after chronic manganese exposure. Neurology. 1993;43(8):1479–83.CrossRefPubMedGoogle Scholar
  49. Hudnell HK. Effects from environmental Mn exposures: a review of the evidence from non-occupational exposure studies. Neurotoxicology. 1999;20(2–3):379–97.PubMedGoogle Scholar
  50. Hurley LS, Keen CL, Baly DL. Manganese deficiency and toxicity: effects on carbohydrate metabolism in the rat. Neurotoxicology. 1984;5(1):97–104.PubMedGoogle Scholar
  51. Imam SZ, Lantz-McPeak SM, Cuevas E, Rosas-Hernandez H, Liachenko S, Zhang Y, et al. Iron oxide nanoparticles induce dopaminergic damage: in vitro pathways and in vivo imaging reveals mechanism of neuronal damage. Mol Neurobiol. 2015;52(2):913–26.CrossRefPubMedGoogle Scholar
  52. Jin L, Wang J, Zhao L, Jin H, Fei G, Zhang Y, et al. Decreased serum ceruloplasmin levels characteristically aggravate nigral iron deposition in Parkinson’s disease. Brain J Neurol. 2011;134(Pt 1):50–8.CrossRefGoogle Scholar
  53. Julander A, Lundgren L, Skare L, Grander M, Palm B, Vahter M, et al. Formal recycling of e-waste leads to increased exposure to toxic metals: an occupational exposure study from Sweden. Environ Int. 2014;73:243–51.CrossRefPubMedGoogle Scholar
  54. Kwakye GF, Paoliello MM, Mukhopadhyay S, Bowman AB, Aschner M. Manganese-induced parkinsonism and Parkinson’s disease: shared and distinguishable features. Int J Environ Res Public Health. 2015;12(7):7519–40.CrossRefPubMedPubMedCentralGoogle Scholar
  55. LaDou J, Lovegrove S. Export of electronics equipment waste. Int J Occup Environ Health. 2008;14(1):1–10.CrossRefPubMedGoogle Scholar
  56. Langston JW. The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann Neurol. 2006;59(4):591–6.CrossRefPubMedGoogle Scholar
  57. Lantos PL. The definition of multiple system atrophy: a review of recent developments. J Neuropathol Exp Neurol. 1998;57(12):1099–111.CrossRefPubMedGoogle Scholar
  58. Leung AO, Duzgoren-Aydin NS, Cheung KC, Wong MH. Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China. Environ Sci Technol. 2008;42(7):2674–80.CrossRefPubMedGoogle Scholar
  59. Lu Y, Prudent M, Fauvet B, Lashuel HA, Girault HH. Phosphorylation of alpha-Synuclein at Y125 and S129 alters its metal binding properties: implications for understanding the role of alpha-Synuclein in the pathogenesis of Parkinson’s disease and related disorders. ACS Chem Neurosci. 2011;2(11):667–75.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Luo C, Liu C, Wang Y, Liu X, Li F, Zhang G, et al. Heavy metal contamination in soils and vegetables near an e-waste processing site, South China. J Hazard Mater. 2011;186(1):481–90.CrossRefPubMedGoogle Scholar
  61. McGeer PL, McGeer EG. Inflammation and neurodegeneration in Parkinson’s disease. Parkinsonism Relat Disord. 2004;10(Suppl 1):S3–7.CrossRefPubMedGoogle Scholar
  62. Montes S, Rivera-Mancia S, Diaz-Ruiz A, Tristan-Lopez L, Rios C. Copper and copper proteins in Parkinson’s disease. Oxidative Med Cell Longev. 2014;2014:147251.CrossRefGoogle Scholar
  63. Moos T, Rosengren Nielsen T, Skjorringe T, Morgan EH. Iron trafficking inside the brain. J Neurochem. 2007;103(5):1730–40.CrossRefPubMedGoogle Scholar
  64. Oakley AE, Collingwood JF, Dobson J, Love G, Perrott HR, Edwardson JA, et al. Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurology. 2007;68(21):1820–5.CrossRefPubMedGoogle Scholar
  65. Oberdorster G, Elder A, Rinderknecht A. Nanoparticles and the brain: cause for concern? J Nanosci Nanotechnol. 2009;9(8):4996–5007.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Oder W, Prayer L, Grimm G, Spatt J, Ferenci P, Kollegger H, et al. Wilson’s disease: evidence of subgroups derived from clinical findings and brain lesions. Neurology. 1993;43(1):120–4.CrossRefPubMedGoogle Scholar
  67. Ogunseitan OA, Schoenung JM, Saphores JD, Shapiro AA. Science and regulation. The electronics revolution: from e-wonderland to e-wasteland. Science. 2009;326(5953):670–1.CrossRefPubMedGoogle Scholar
  68. Olanow CW. Manganese-induced parkinsonism and Parkinson’s disease. Ann N Y Acad Sci. 2004;1012:209–23.CrossRefPubMedGoogle Scholar
  69. Olanow CW, Good PF, Shinotoh H, Hewitt KA, Vingerhoets F, Snow BJ, et al. Manganese intoxication in the rhesus monkey: a clinical, imaging, pathologic, and biochemical study. Neurology. 1996;46(2):492–8.CrossRefPubMedGoogle Scholar
  70. Pal PK, Samii A, Calne DB. Manganese neurotoxicity: a review of clinical features, imaging and pathology. Neurotoxicology. 1999;20(2–3):227–38.PubMedGoogle Scholar
  71. Perl DP, Olanow CW. The neuropathology of manganese-induced parkinsonism. J Neuropathol Exp Neurol. 2007;66(8):675–82.CrossRefPubMedGoogle Scholar
  72. Quadri M, Federico A, Zhao T, Breedveld GJ, Battisti C, Delnooz C, et al. Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. Am J Hum Genet. 2012;90(3):467–77.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Rhodes SL, Buchanan DD, Ahmed I, Taylor KD, Loriot MA, Sinsheimer JS, et al. Pooled analysis of iron-related genes in Parkinson’s disease: association with transferrin. Neurobiol Dis. 2014;62:172–8.CrossRefPubMedGoogle Scholar
  74. Rybicki BA, Johnson CC, Peterson EL, Kortsha GX, Gorell JM. A family history of Parkinson’s disease and its effect on other PD risk factors. Neuroepidemiology. 1999;18(5):270–8.CrossRefPubMedGoogle Scholar
  75. Santamaria AB, Cushing CA, Antonini JM, Finley BL, Mowat FS. State-of-the-science review: does manganese exposure during welding pose a neurological risk? J Toxicol Environ Health. 2007;10(6):417–65.CrossRefGoogle Scholar
  76. Schroeder HA, Balassa JJ, Tipton IH. Essential trace metals in man: manganese. A study in homeostasis. J Chronic Dis. 1966;19(5):545–71.CrossRefPubMedGoogle Scholar
  77. Shinotoh H, Snow BJ, Hewitt KA, Pate BD, Doudet D, Nugent R, et al. MRI and PET studies of manganese-intoxicated monkeys. Neurology. 1995;45(6):1199–204.CrossRefPubMedGoogle Scholar
  78. Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP, Hebenstreit G, et al. Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm. 1988;74(3):199–205.CrossRefPubMedGoogle Scholar
  79. Sulzer D, Bogulavsky J, Larsen KE, Behr G, Karatekin E, Kleinman MH, et al. Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc Natl Acad Sci U S A. 2000;97(22):11869–74.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Torsdottir G, Kristinsson J, Sveinbjornsdottir S, Snaedal J, Johannesson T. Copper, ceruloplasmin, superoxide dismutase and iron parameters in Parkinson’s disease. Pharmacol Toxicol. 1999;85(5):239–43.CrossRefPubMedGoogle Scholar
  81. Torsdottir G, Sveinbjornsdottir S, Kristinsson J, Snaedal J, Johannesson T. Ceruloplasmin and superoxide dismutase (SOD1) in Parkinson’s disease: a follow-up study. J Neurol Sci. 2006;241(1–2):53–8.CrossRefPubMedGoogle Scholar
  82. Tsydenova O, Bengtsson M. Chemical hazards associated with treatment of waste electrical and electronic equipment. Waste Manag. 2011;31(1):45–58.CrossRefPubMedGoogle Scholar
  83. Uversky VN, Li J, Fink AL. Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem. 2001;276(47):44284–96.CrossRefPubMedGoogle Scholar
  84. Valensin D, Dell’Acqua S, Kozlowski H, Casella L. Coordination and redox properties of copper interaction with alpha-synuclein. J Inorg Biochem. 2016.Google Scholar
  85. Verina T, Schneider JS, Guilarte TR. Manganese exposure induces alpha-synuclein aggregation in the frontal cortex of non-human primates. Toxicol Lett. 2013;217(3):177–83.CrossRefPubMedGoogle Scholar
  86. Williams DR, de Silva R, Paviour DC, Pittman A, Watt HC, Kilford L, et al. Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson’s syndrome and PSP-parkinsonism. Brain J Neurol. 2005;128(Pt 6):1247–58.CrossRefGoogle Scholar
  87. Win-Shwe TT, Fujimaki H. Nanoparticles and neurotoxicity. Int J Mol Sci. 2011;12(9):6267–80.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Wu J, Ding T, Sun J. Neurotoxic potential of iron oxide nanoparticles in the rat brain striatum and hippocampus. Neurotoxicology. 2013;34:243–53.CrossRefPubMedGoogle Scholar
  89. Xu B, Wang F, Wu SW, Deng Y, Liu W, Feng S, et al. Alpha-Synuclein is involved in manganese-induced ER stress via PERK signal pathway in organotypic brain slice cultures. Mol Neurobiol. 2014;49(1):399–412.CrossRefPubMedGoogle Scholar
  90. Xue M, Yang Y, Ruan J, Xu Z. Assessment of noise and heavy metals (Cr, Cu, Cd, Pb) in the ambience of the production line for recycling waste printed circuit boards. Environ Sci Technol. 2012;46(1):494–9.CrossRefPubMedGoogle Scholar
  91. Zecca L, Tampellini D, Gatti A, Crippa R, Eisner M, Sulzer D, et al. The neuromelanin of human substantia nigra and its interaction with metals. J Neural Transm (Vienna). 2002;109(5–6):663–72.CrossRefGoogle Scholar
  92. Zhang K, Schnoor JL, Zeng EY. E-waste recycling: where does it go from here? Environ Sci Technol. 2012;46(20):10861–7.CrossRefPubMedGoogle Scholar
  93. Zucca FA, Giaveri G, Gallorini M, Albertini A, Toscani M, Pezzoli G, et al. The neuromelanin of human substantia nigra: physiological and pathogenic aspects. Pigm Cell Res/Sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society. 2004;17(6):610–7.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Environmental HealthRollins School of Public Health, Center for Neurodegenerative Disease, Emory UniversityAtlantaUSA

Personalised recommendations