Chemical Speciation of Selenium and Mercury as Determinant of Their Neurotoxicity

  • C. S. Oliveira
  • B. C. Piccoli
  • M. Aschner
  • J. B. T. RochaEmail author
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 18)


The antagonism of mercury toxicity by selenium has been well documented. Mercury is a toxic metal, widespread in the environment. The main target organs (kidneys, lungs, or brain) of mercury vary depending on its chemical forms (inorganic or organic). Selenium is a semimetal essential to mammalian life as part of the amino acid selenocysteine, which is required to the synthesis of the selenoproteins. This chapter has the aim of disclosing the role of selenide or hydrogen selenide (Se−2 or HSe) as central metabolite of selenium and as an important antidote of the electrophilic mercury forms (particularly, Hg2+ and MeHg). Emphasis will be centered on the neurotoxicity of electrophile forms of mercury and selenium. The controversial participation of electrophile mercury and selenium forms in the development of some neurodegenerative disease will be briefly presented. The potential pharmacological use of organoseleno compounds (Ebselen and diphenyl diselenide) in the treatment of mercury poisoning will be considered. The central role of thiol (−SH) and selenol (−SeH) groups as the generic targets of electrophile mercury forms and the need of new in silico tools to guide the future biological researches will be commented.


Selenide Selenoproteins Selenocysteine Cysteine Neurotoxicity 


  1. Alderman LC, Bergin JJ. Hydrogen selenide poisoning: an illustrative case with review of the literature. Arch Environ Health. 1986;41:354–8.PubMedCrossRefGoogle Scholar
  2. Aldosary BM, Sutter ME, Schwartz M, Morgan BW. Case series of selenium toxicity from a nutritional supplement. Clin Toxicol. 2012;50:57–64.CrossRefGoogle Scholar
  3. Alexander J, Thomassen Y, Aaseth J. Increased urinary excretion of selenium among workers exposed to elemental mercury vapor. J Appl Toxicol. 1983;3:143–5.PubMedCrossRefGoogle Scholar
  4. Asaduzzaman AM, Schreckenbach G. Degradation mechanism of methyl selenoamino acid complexes: a computational study. Inorg Chem. 2011;50:2366–72.PubMedCrossRefGoogle Scholar
  5. Aschner M. Brain, kidney and liver 203Hg-methyl mercury uptake in the rat: relationship to the neutral amino acid carrier. Basic Clinic Pharmacol Toxicol. 1989;65:17–20.CrossRefGoogle Scholar
  6. Aschner M, Syversen T, Souza DO, Rocha JB, Farina M. Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity. Braz J Med Biol Res. 2007;40:285–91.PubMedCrossRefGoogle Scholar
  7. Atchison WD, Hare MF. Mechanisms of methylmercury-induced neurotoxicity. FASEB J. 1984;8:622–9.Google Scholar
  8. Barbosa AC, de Souza J, Dórea JG, Jardim WF, Fadini OS. Mercury Biomagnification in a tropical black water, Rio Negro, Brazil. Arch Environ Contam Toxicol. 2003;45:235–46.PubMedCrossRefGoogle Scholar
  9. Barwick M, Maher W. Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia. Mar Environ Res. 2003;56:471–502.PubMedCrossRefGoogle Scholar
  10. Bellinger FP, Bellinger MT, Seale LA, Takemoto AS, Raman AV, Miki T, Manning-Boğ AB, Berry MJ, White LR, Ross GW. Glutathione peroxidase 4 is associated with neuromelanin in substantia nigra and dystrophic axons in putamen of Parkinson's brain. Mol Neurodegener. 2011;21:8.CrossRefGoogle Scholar
  11. Benz MR, Lee SH, Kellner L, Döhlemann C, Berweck S. Hyperintense lesions in brain MRI after exposure to a mercuric chloride-containing skin whitening cream. Eur J Pediatr. 2011;170:747–50.PubMedCrossRefGoogle Scholar
  12. Berlin M, Fazackerley J, Nordberg G, Kand M. The uptake of mercury in the brains of mammals exposed to mercury vapor and to mercuric salts. Arch Environ Health. 1969;18:719–29.PubMedCrossRefGoogle Scholar
  13. Bjørklund G, Aaseth J, Ajsuvakova OP, Nikonorov AA, Skalny AV, Skalnaya MG, Tinkov AA. Molecular interaction between mercury and selenium in neurotoxicity. Coord Chem Rev. 2016; doi: 10.1016/j.ccr.2016.10.009.
  14. Blaurock-Busch E, Amin OR, Dessoki HH, Rabah T. Toxic metals and essential elements in hair and severity of symptoms among children with autism. Maedica (Buchar). 2012;7:38–48.Google Scholar
  15. Bowles KC, Apte SC, Maher WA, Kawei M, Smith R. Bioaccumulation and biomagnification of mercury in Lake Murray, Papua New Guinea. Can J Fish Aquat Sci. 2001;58:888–97.CrossRefGoogle Scholar
  16. Branco V, Caito S, Farina M, Rocha JBT, Aschner M, Carvalho C. Biomarkers of mercury toxicity: Past, present, and future trends. J Toxicol Environ Health Part B. 2007; doi: 10.1080/10937404.2017.1289834.
  17. Brandão F, Cappello T, Raimundo J, Santos MA, Maisano M, Mauceri A, Pacheco M, Pereira P. Unravelling the mechanisms of mercury hepatotoxicity in wild fish (Liza aurata) through a triad approach: bioaccumulation, metabolomic profiles and oxidative stress. Metallomics. 2015;7:1352–63.PubMedCrossRefGoogle Scholar
  18. Brandão R, Moresco RN, Bellé LP, Leite MR, de Freitas ML, Bianchini A, Nogueira CW. Diphenyl diselenide potentiates nephrotoxicity induced by mercuric chloride in mice. J Appl Toxicol. 2011;31:773–82.PubMedCrossRefGoogle Scholar
  19. Bridges CC, Zalups RK. Mechanisms involved in the transport of mercuric ions in target tissues. Arch Toxicol. 2016; doi: 10.1007/s00204-016-1803-y.
  20. Byrns CN, Pitts MW, Gilman CA, Hashimoto AC, Berry MJ. Mice lacking selenoprotein P and selenocysteine lyase exhibit severe neurological dysfunction, neurodegeneration, and audiogenic seizures. J Biol Chem. 2014;289:9662–74.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Burk RF, Hill KE, Read R, Bellew T. Response of rat selenoprotein P to selenium administration and fate of its selenium. Am J Phys. 1991;261:26–30.Google Scholar
  22. Burk RF, Hill KE, Motley AK, Winfrey VP, Kurokawa S, Mitchell SL, Wanqi Zhang W. Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration. FASEB J. 2014;Google Scholar
  23. Cardoso BR, Roberts BR, Bush AI, Hare DJ. Selenium, selenoproteins and neurodegenerative diseases. Metallomics. 2015;7:1213–28.PubMedCrossRefGoogle Scholar
  24. Carlson BA, Xu MX, Gladyshev VN, Hatfield DL. Um34 in selenocysteine tRNA is required for the expression of stress-related selenoproteins in mammals. Top Curr Genet. 2005;12:431–8.CrossRefGoogle Scholar
  25. Ceccatelli S, Daré E, Moors M. Methylmercury-induced neurotoxicity and apoptosis. Chem Biol Interact. 2010;188:301–8.PubMedCrossRefGoogle Scholar
  26. Chan TY. Inorganic mercury poisoning associated with skin-lightening cosmetic products. Clin Toxicol. 2011;49:886–91.CrossRefGoogle Scholar
  27. Chapman PM. Selenium – a potential time bomb or just another contaminant. Hum Ecol Risk Assessm. 1999;5:1123–38.CrossRefGoogle Scholar
  28. Chapple CE, Guigó R. Relaxation of selective constraints causes independent selenoprotein extinction in insect genomes. PLoS One. 2008;4(7) doi: 10.1371/journal.pone.0002968.
  29. Chen J. An original discovery: selenium deficiency and Keshan disease (an endemic heart disease). Asia Pac J Clin Nutr. 2012;21:320–6.PubMedGoogle Scholar
  30. Chmielnicka J, Komsta-Szumska E, Jedrychowski R. Organ and subcellular distribution of mercury in rats as dependent on the time of exposure to sodium selenite. Environ Res. 1979;20:80–6.PubMedCrossRefGoogle Scholar
  31. Clarkson TW. The toxicology of mercury. Crit Rev Clin Lab Sci. 1997;34:369–403.PubMedCrossRefGoogle Scholar
  32. Clarkson TW. The three modern faces of mercury. Environ Health Perspect. 2002;110:11–23.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Clarkson TW, Vyas JB, Ballatori N. Mechanisms of mercury disposition in the body. Am J Ind Med. 2007;50:757–64.PubMedCrossRefGoogle Scholar
  34. Crack PJ, Cimdins K, Ali U, Hertzog PJ, Iannello RC. Lack of glutathione peroxidase-1 exacerbates Abeta-mediated neurotoxicity in cortical neurons. J Neural Transm. 2006;113:645–57.PubMedCrossRefGoogle Scholar
  35. Curtis JT, Chen Y, Buck DJ, Davis RL. Chronic inorganic mercury exposure induces sex-specific changes in central TNF expression: importance in autism? Neurosci Lett. 2011;504:40–4.PubMedCentralCrossRefGoogle Scholar
  36. Dalla Corte CL, Wagner C, Sudati JH, Comparsi B, Leite GO, Busanello A, Soares FAA, Aschner M, Rocha JBT. Effects of diphenyl Diselenide on methylmercury toxicity in rats. BioMed Res Intern. 2013; doi: 10.1155/2013/983821.
  37. de Freitas AS, Funck VR, Rotta Mdos S, Bohrer D, Mörschbächer V, Puntel RL, Nogueira CW, Farina M, Aschner M, Rocha JB. Diphenyl diselenide, a simple organoselenium compound, decreases methylmercury-induced cerebral, hepatic and renal oxidative stress and mercury deposition in adult mice. Brain Res Bull. 2009;79:77–84.PubMedCrossRefGoogle Scholar
  38. de Freitas ML, da Silva AR, Roman SS, Brandão R. Effects of 4,4′-dichloro-diphenyl diselenide (ClPhSe)2 on toxicity induced by mercuric chloride in mice: a comparative study with diphenyl diselenide (PhSe)2. Environ Toxicol Pharmacol. 2012;34:985–94.PubMedCrossRefGoogle Scholar
  39. De Palma G, Catalani S, Franco A, Brighenti M, Apostoli P. Lack of correlation between metallic elements analyzed in hair by ICP-MS and autism. J Autism Dev Disord. 2012;42:342–53.PubMedCrossRefGoogle Scholar
  40. Diamond AM, Choin IS, Grain PF, Hashizumell T, Pomerantzll SC, Cruz R, Steer CJ, Hill KE, Burk RF, McCloskey HDL. Dietary selenium affects methylation of the wobble nucleoside in the anticodon of Selenocysteine tRNA[Ser]Sec. J Biol Chem. 1993;268:14215–23.PubMedGoogle Scholar
  41. Dong W, Liu J, Wei L, Jingfeng Y, Chernick M, Hinton DE. Developmental toxicity from exposure to various forms of mercury compounds in medaka fish (Oryzias latipes) embryos. Peer J. 2016;23:2282.CrossRefGoogle Scholar
  42. Drosophila 12 Genomes Consortium. Evolution of genes and genomes on the drosophila phylogeny. Nature. 2007;450:203–18.CrossRefGoogle Scholar
  43. Dumont E, Vanhaecke F, Cornelis R. Selenium speciation from food source to metabolites: a critical review. Anal Bioanal Chem. 2006;385:1304–23.PubMedCrossRefGoogle Scholar
  44. Ekino S, Susa M, Ninomiya T, Imamura K, Kitamura T. Minamata disease revisited: an update on the acute and chronic manifestations of methyl mercury poisoning. J Neurol Sci. 2007;262:131–44.PubMedCrossRefGoogle Scholar
  45. El-Demerdash FM. Effects of selenium and mercury on the enzymatic activities and lipid peroxidation in brain, liver, and blood of rats. J Environ Sci Health B. 2001;36:489–99.PubMedCrossRefGoogle Scholar
  46. Ellingson RJ, Beard MC, Johnson JC, Yu P, Micic OI, Nozik AJ, Shabaev A, Efros AL. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 2005;5:865–71.PubMedCrossRefGoogle Scholar
  47. Erken HA, Koç ER, Yazıcı H, Yay A, Önder GÖ, Sarıcı SF. Selenium partially prevents cisplatin-induced neurotoxicity: a preliminary study. Neurotoxicology. 2014;42:71–5.PubMedCrossRefGoogle Scholar
  48. Esaki N, Nakamura T, Tanaka H, Soda K. Selenocysteine lyase, a novel enzyme that specifically acts on selenocysteine. Mammalian distribution, purification, and properties of pig liver enzyme. J Biol Chem. 1982;257:4386–91.PubMedGoogle Scholar
  49. Fagan S, Owens R, Ward P, Connolly C, Doyle S, Murphy R. Biochemical comparison of commercial selenium yeast preparations. Biol Trace Elem Res. 2015;166:245–59.PubMedCrossRefGoogle Scholar
  50. Falnoga I, Tušek-Žnidarič M. Selenium–mercury interactions in man and animals. Biol Trace Elem Res. 2007;119:212–20.PubMedCrossRefGoogle Scholar
  51. Farina M, Frizzo ME, Soares FA, Schwalm FD, Dietrich MO, Zeni G, Rocha JBT, Souza DO. Ebselen protects against methylmercury-induced inhibition of glutamate uptake by cortical slices from adult mice. Toxicol Lett. 2003a;144:351–7.PubMedCrossRefGoogle Scholar
  52. Farina M, Dahm KC, Schwalm FD, Brusque AM, Frizzo ME, Zeni G, Souza DO, Rocha JBT. Methylmercury increases glutamate release from brain synaptosomes and glutamate uptake by cortical slices from suckling rat pups: modulatory effect of ebselen. Toxicol Sci. 2003b;73:135–40.PubMedCrossRefGoogle Scholar
  53. Farina M, Aschner M, Rocha JBT. Oxidative stress in MeHg-induced neurotoxicity. Toxicol Applied Pharmacol. 2011a;256:405–17.CrossRefGoogle Scholar
  54. Farina M, Rocha JBT, Aschner M. Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci. 2011b;89:555–63.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Farina M, Aschner M, Rocha JBT. The catecholaminergic neurotransmitter system in methylmercuryinduced neurotoxicityGoogle Scholar
  56. Feng S, Xu Z, Wang F, Yang T, Liu W, Deng Y, Xu B. Sulforaphane prevents methylmercury-induced oxidative damage and excitotoxicity through activation of the Nrf2-ARE pathway. Mol Neurobiol. 2016;7:1–17.Google Scholar
  57. Fiuza Tda L, Oliveira CS, da Costa M, Oliveira VA, Zeni G, Pereira ME. Effectiveness of (PhSe)2 in protect against the HgCl2 toxicity. J Trace Elem Med Biol. 2015;29:255–62.PubMedCrossRefGoogle Scholar
  58. Fordyce F. Selenium geochemistry and health. Ambio. 2007;36:94–7.PubMedCrossRefGoogle Scholar
  59. Forstrom JW, Zakowski JJ, Tappel AL. Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine. Biochemistry. 1978;27:2639–44.CrossRefGoogle Scholar
  60. Frost DV. The two faces of selenium – can selenophobia be cured? Crit Rev Toxicol. 1972;Google Scholar
  61. Gajdosechova Z, Lawan MM, Urgast DS, Raab A, Scheckel KG, Lombi E, Kopittke PM, Loeschner K, Larsen EH, Woods G, Brownlow A, Read FL, Feldmann J, Krupp EM. In vivo formation of natural HgSe nanoparticles in the liver and brain of pilot whales. Sci Rep. 2016; doi: 10.1038/srep34361.
  62. Gardaneh M, Gholami M, Maghsoudi N. Synergy between glutathione peroxidase-1and astrocytic growth factors suppresses free radical generation and protects dopaminergic neurons against 6-hydroxydopamine. Rejuvenation Res. 2011;14:195–204.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gbetoh MH, Amyot M. Mercury, hydroquinone and clobetasol propionate in skin lightening products in West Africa and Canada. Environ Res. 2016;150:403–10.PubMedCrossRefGoogle Scholar
  64. Glaser V, Nazari EM, Müller YM, Feksa L, Wannmacher CM, Rocha JB, De Bem AF, Farina M, Latini A. Effects of inorganic selenium administration in methylmercury-induced neurotoxicity in mouse cerebral cortex. Int J Dev Neurosci. 2010;28:631–7.PubMedCrossRefGoogle Scholar
  65. Glaser V, Moritz B, Schmitz A, Dafré AL, Nazari EM, Rauh Müller YM, Feksa L, Straliottoa MR, de Bem AF, Farina M, da Rocha JB, Latini A. Protective effects of diphenyl diselenide in a mouse model of brain toxicity. Chem Biol Interact. 2013;206:18–26.PubMedCrossRefGoogle Scholar
  66. Glaser V, Martins Rde P, Vieira AJ, Oliveira Ede M, Straliotto MR, Mukdsi JH, Torres AI, de Bem AF, Farina M, da Rocha JB, De Paul AL, Latini A. Diphenyl diselenide administration enhances cortical mitochondrial number and activity by increasing hemeoxygenase type 1 content in a methylmercury-induced neurotoxicity mouse model. Mol Cell Biochem. 2014;390:1–8.PubMedCrossRefGoogle Scholar
  67. Glynn AW, Ilback N-G, Brabencova D, Carlsson L, Enqvist E-C, Netzel E, Oskarsson A. Influence of sodium selenite on 203Hg absorption, distribution, and elimination in male mice exposed to methyl203Hg. Biol Trace Elem Res. 1993;39:97–107.CrossRefGoogle Scholar
  68. Hamilton SJ. Review of selenium toxicity in the aquatic food chain. Sci Total Environ. 2004;326:1–31.PubMedCrossRefGoogle Scholar
  69. Hassan W, Oliveira CS, Noreen H, Kamdem JP, Nogueira CW, Rocha JBT. Organoselenium compounds as potential neuroprotective therapeutic agents. Curr Org Chem. 2015;20:218–31.CrossRefGoogle Scholar
  70. Hawkes WC, Tappel AL. In vitro synthesis of glutathione peroxidase from selenite. Translational incorporation of selenocysteine. Biochim Biophys Acta. 1983;739:225–34.PubMedCrossRefGoogle Scholar
  71. Hawkes WC, Lyons DE, Tappel AL. Identification of a selenocysteine-specific aminoacyl transfer RNA from rat liver. Biochim Biophys Acta. 1982;31:183–91.CrossRefGoogle Scholar
  72. Hatfield DL, Lee BJ, Diamond AM. Selenium induces changes in the selenocysteine tRNA[Ser]sec population in mammalian cells. Nucleic Acids Res. 1991;19:939–43.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Hatfield DL, Carlson BA, Xu XM, Mix H, Gladyshev VN. Selenocysteine incorporation machinery and the role of selenoproteins in development and health progress nucleic acid. Res Mol Biol. 2006;81:97–142.Google Scholar
  74. Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN. Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci. 2014;39:112–20.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Heath JC, Banna KM, Reed MN, Pesek EF, Cole N, Li J, Newland MC. Dietary selenium protects against selected signs of aging and methylmercury exposure. Neurotoxicology. 2010;31:169–79.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Heverly-Coulson GS, Boyd RJ. Reduction of hydrogen peroxide by glutathione peroxidase mimics: reaction mechanism and energetics. J Phys Chem A. 2010;114:1996–2000.PubMedCrossRefGoogle Scholar
  77. Hilt B, Svendsen K, Syversen T, Aas O, Qvenild T, Sletvold H, Melø I. Occurrence of cognitive symptoms in dental assistants with previous occupational exposure to metallic mercury. Neurotoxicology. 2009;30:1202–6.PubMedCrossRefGoogle Scholar
  78. Hongo T, Suzuki T, Himeno S, Watanabe C, Satoh H, Shimada Y. Does mercury vapor exposure increase urinary selenium excretion? Ind Health. 1985;23:163–5.PubMedCrossRefGoogle Scholar
  79. Horn MJ, Jones DB. Isolation from Astragalus pectinatus of a crystalline amino acid complex containing selenium and sulfur. J Biol Chem. 1940;139:649–60.Google Scholar
  80. Horowitz HM, Jacob DJ, Amos HM, Streets DG, Sunderland EM. Historical mercury releases from commercial products: global environmental implications. Environ Sci Technol. 2014;48:10242–50.PubMedCrossRefGoogle Scholar
  81. Housecroft C, Sharpe AG. Inorganic chemistry. 4th ed. Harlow: Pearson Education Limited; 2012. chapter 15Google Scholar
  82. Howard MT, Carlson BA, Anderson CB, Hatfield DL. Translational redefinition of UGA codons is regulated by selenium availability. J Biol Chem. 2013;2:122–8.Google Scholar
  83. Huang JQ, Ren FZ, Jiang YY, Lei X. Characterization of Selenoprotein M and its response to selenium deficiency in chicken brain. Biol Trace Elem Res. 2016;170:449–58.PubMedCrossRefGoogle Scholar
  84. Huber RE, Criddle RS. Comparison of the chemical properties of selenocysteine and selenocystine with their sulfur analogs. Arch Biochem Biophys. 1967;122:164–73.PubMedCrossRefGoogle Scholar
  85. Hursh JB, Sichak SP, Clarkson TW. In vitro oxidation of mercury by the blood. Pharmacol Toxicol. 1988;63:26–273.Google Scholar
  86. Imam SZ, Newport GD, Islam F, Slikker W, Ali SF. Selenium, an antioxidant, protects against methamphetamine-induced dopaminergic neurotoxicity. Brain Res. 1999;818:575–8.PubMedCrossRefGoogle Scholar
  87. Ishihara Y, Tsuji M, Kawamoto T, Yamazaki T (2016) Involvement of reactive oxygen species derived from mitochondria in neuronal injury elicited by methylmercury. J Clin Biochem Nutr 16-19.Google Scholar
  88. Ishitobi H, Stern S, Thurston SW, Zareba G, Langdon M, Gelein R, Weiss B. Organic and inorganic mercury in neonatal rat brain after prenatal exposure to methylmercury and mercury vapor. Environ Health Perspec. 2010;118:242–8.CrossRefGoogle Scholar
  89. Iwata H, Masukawa T, Kito H, Hayashi M. Degradation of methylmercury by selenium. Life Sci. 1982;31:859–66.PubMedCrossRefGoogle Scholar
  90. Karaboduk H, Uzunhisarcikli M, Kalender Y. Protective effects of sodium selenite and vitamin e on mercuric chloride-induced cardiotoxicity in male rats. Braz Arch Biol Technol. 2015;58:229–38.CrossRefGoogle Scholar
  91. Kasaikina MV, Fomenko DE, Labunskyy VM, Lachke SA, Qiu W, Moncaster JA, Zhang J, Wojnarowicz MW Jr, Natarajan SK, Malinouski M, Schweizer U, Tsuji PA, Carlson BA, Maas RL, Lou MF, Goldstein LE, Hatfield DL, Gladyshev VN. Roles of the 15-kDa selenoprotein (Sep15) in redox homeostasis and cataract development revealed by the analysis of Sep 15 knockout mice. J Biol Chem. 2011;286:33203–12.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Kern JK, Geier DA, Bjørklund G, King PG, Homme KG, Haley BE, Sykes LK, Geier MR. Evidence supporting a link between dental amalgams and chronic illness, fatigue, depression, anxiety, and suicide. Neuro Endocrinol Lett. 2014;35:535–52.Google Scholar
  93. Kern JK, Geier DA, Deth RC, Sykes LK, Hooker BS, Love JM, Bjørklund G, Chaigneau CG, Haley BE, Geier MR. Systematic assessment of research on Autism Spectrum Disorder and mercury reveals conflicts of interest and the need for transparency in autism research. Sci Eng Ethics. 2015; doi: 10.1007/s11948-015-9713-6.
  94. Kern JK, Geier DA, Sykes LK, Haley BE, Geier MR. The relationship between mercury and autism: a comprehensive review and discussion. J Trace Elem Med Biol. 2016;37:8–24.PubMedCrossRefGoogle Scholar
  95. Khan MAK, Wang F. Mercury-selenium compounds and their toxicological significance: toward a molecular understanding of the mercury-selenium antagonism. Environ Toxicol Chem. 2009;28:1567–77.PubMedCrossRefGoogle Scholar
  96. Kim IY, Stadtman TC. Selenophosphate synthetase: Detection in extracts of rat tissues by immunoblot assay and partial purification of the enzyme from the archaean Methanococcus vannielii (mammalian selenophosphate synthetase). Proc Natl Acad Sci USA. 1995;92:7710–3.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Kim YJ, Chai YG, Ryu JC. Selenoprotein W as molecular target of methylmercury in human neuronal cells is down-regulated by GSH depletion. Biochem Biophys Res Commun. 2005;20:1095–10200.CrossRefGoogle Scholar
  98. Kim YN, Kim YA, Yang AR, Lee BH. Relationship between blood mercury level and risk of cardiovascular diseases: results from the fourth Korea National Health and nutrition examination survey (KNHANES IV) 2008-2009. Prev Nutr Food Sci. 2014;19:333–42.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Kirkpatrick M, Benoit J, Everett W, Gibson J, Rist M, Fredette N. The effects of methylmercury exposure on behavior and biomarkers of oxidative stress in adult mice. NeuroToxicol. 2015;50:170–8.CrossRefGoogle Scholar
  100. Korbas M, O’Donoghue JL, Watson GE, Pickering IJ, Singh SP, Myers G, Clarkson TW, George GN. The chemical nature of mercury in human brain following poisoning or environmental exposure. ACS Chem Neurosci. 2010;1:810–8.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Kristensen AKB, Thomsen JF, Mikkelsen S. A review of mercury exposure among artisanal small-scale gold miners in developing countries. Int Arch Occup Environ Health. 2014;87:579–90.PubMedCrossRefGoogle Scholar
  102. Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: molecular pathways and physiological roles. Physiol Rev. 2014;94:739–77.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Lakshmi Priya MD, Geetha A. Level of trace elements (copper, zinc, magnesium and selenium) and toxic elements (lead and mercury) in the hair and nail of children with autism. Biol Trace Elem Res. 2011;142:148–58.PubMedCrossRefGoogle Scholar
  104. Lee BJ, Worland PJ, Davis JN, Stadtman TC, Hatfield DL. Identification of a selenocysteinyl-tRNAser in mammalian cells that recognizes the nonsense codon, UGA. J Biol Chem. 1989;264:9724–7.PubMedGoogle Scholar
  105. Lemly AD. Assessing the toxic threat of selenium to fish and aquatic birds. Environ Monit Assess. 1996;43:19–35.PubMedCrossRefGoogle Scholar
  106. Letz R, Gerr F, Cragle D, Green RC, Watkins J, Fidler AT. Residual neurologic deficits 30 years after occupational exposure to elemental mercury. Neurotoxicology. 2000;21:459–74.PubMedGoogle Scholar
  107. Li N, Reddy PS, Thyagaraju K, Reddy AP, Hsu BL, Scholz RW, Tu C-P D, Reddy CC. Elevation of rat liver mRNA for selenium-dependent glutathione peroxidase by selenium deficiency. J Biol Chem. 1990;265:108–13.PubMedGoogle Scholar
  108. Li YF, Dong Z, Chen C, Li B, Gao Y, Qu L, Wang T, Fu X, Zhao Y, Chai Z. Organic selenium supplementation increases mercury excretion and decreases oxidative damage in long-term mercury-exposed residents from Wanshan, China. Environ Sci Technol. 2012;46:11313–8.PubMedCrossRefGoogle Scholar
  109. Liu ZH, Jing YH, Yin J, Mu JY, Yao TT, Gao LP. Downregulation of thioredoxin reductase 1 expression in the substantia nigra pars compacta of Parkinson's disease mice. Neural Regener Res. 2013;8:3275–83.Google Scholar
  110. Lobanov AV, Hatfield DL, Gladyshev VN. Selenoproteinless animals: selenophosphate synthetase SPS1 functions in a pathway unrelated to selenocysteine biosynthesis. Protein Sci. 2008;17:176–82.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Lobanov AV, Hatfield DL, Gladyshev VN. Eukaryotic selenoproteins and selenoproteomes. Biochim at Biophys Acta. 2009;1790:1424–8.CrossRefGoogle Scholar
  112. Lohren H, Bornhorst J, Gallab H, Schwerdtle T. The blood–cerebrospinal fluid barrier – first evidence for an active transport of organic mercury compounds out of the brain. Metallomics. 2015;7:1420–30.PubMedCrossRefGoogle Scholar
  113. Magos L, Clarkson TW. Overview of the clinical toxicity of mercury. Ann Clin Biochem. 2006;43:257–68.PubMedCrossRefGoogle Scholar
  114. Magos L, Webb M. The effect of selenium on the brain uptake of methylmercury. Arch Toxicol. 1977;38:201–7.PubMedCrossRefGoogle Scholar
  115. Malagoli M, Schiavon M, Dall'Acqua S, Pilon-Smits EA. Effects of selenium biofortification on crop nutritional quality. Front Plant Sci. 2015;21:280.Google Scholar
  116. Maquat LE. Evidence that selenium deficiency results in the cytoplasmic decay of GPx1 mRNA dependent on pre-mRNA splicing proteins bound to the mRNA exon-exon junction. Biofactors. 2001;14:37–42.PubMedCrossRefGoogle Scholar
  117. Marques RC, Bernardi JVE, Abreu L, Dórea JG. Neurodevelopment outcomes in children exposed to organic mercury from multiple sources in a tin-ore mine environment in Brazil. Arch Environ Contam Toxicol. 2015;68:432–41.PubMedCrossRefGoogle Scholar
  118. Metanis N, Beld J, Hilvert D. Chapter 19: The chemistry of selenocysteine. In: Patai S, editor. The chemistry of organic selenium and tellurium compounds, vol. 3. New York: Wiley; 1995.Google Scholar
  119. Moraes-Silva L, Siqueira LF, Oliveira VA, Oliveira CS, Ineu RP, Pedroso TF, Fonseca MM, Pereira ME. Preventive effect of CuCl2 on behavioral alterations and mercury accumulation in central nervous system induced by HgCl2 in newborn rats. J Biochem Mol Toxicol. 2014;28:328–35.PubMedCrossRefGoogle Scholar
  120. Moretto MB, Franco J, Posser T, Nogueira CW, Zeni G, Rocha JBT. Ebselen protects Ca2+ influx blockage but does not protect glutamate uptake inhibition caused by Hg2+. Neurochem Res. 2004;29:1801–6.PubMedCrossRefGoogle Scholar
  121. Moretto MB, Funchal C, Santos AQ, Gottfried C, Boff B, Zeni G, Pessoa-Pureur R, Souza D, Wofchuk S, Rocha JBT. Ebselen protects glutamate uptake inhibition caused by methyl mercury but does not by Hg2+. Toxicology. 2005;214:57–66.PubMedCrossRefGoogle Scholar
  122. Muntean M, Janssens-Maenhout G, Song S, Selin NE, Olivier JGJ, Guizzardi D, Maas R, Dentener F. Trend analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions. Sci Total Environ. 2014;494–495:337–50.PubMedCrossRefGoogle Scholar
  123. Mutter J, Naumann J, Schneider R, Walach H, Haley B. Mercury and autism: accelerating evidence. Neuroendocrinol Lett. 2005;26:439–6.PubMedGoogle Scholar
  124. Mutter J, Curth A, Naumann J, Deth R, Walach H. Does inorganic mercury play a role in Alzheimer's disease? A systematic review and an integrated molecular mechanism. J Alzheimers Dis. 2010;22:357–74.PubMedCrossRefGoogle Scholar
  125. Nakayama A, Hill KE, Austin LM, Motley AK, Burk RF. All regions of mouse brain are dependent on selenoprotein P for maintenance of selenium. J Nutr. 2007;137:690–3.PubMedGoogle Scholar
  126. Naganuma A, Ishii Y, Imura N. Effect of administration sequence of mercuric chloride and sodium selenite on their fates and toxicities in mice. Ecotoxicol Environ Saf. 1984;8:572–80.PubMedCrossRefGoogle Scholar
  127. NAS. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. A report of the Panel on Dietary Antioxidants and Related Compounds, Subcommittees on Upper Reference Levels of Nutrients and Interpretation and Uses of Dietary Reference Intakes, and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Washington, DC: National Academy of Sciences, Institute of Medicine, Food and Nutrition Board; 2000.Google Scholar
  128. Nauser T, Steinmann D, Koppenol WH. Why do proteins use selenocysteine instead of cysteine? Amino Acids. 2012;42:39–44.PubMedCrossRefGoogle Scholar
  129. Navarro-Alarcon M, López-Martínez MC. Essentiality of selenium in the human body: relationship with different diseases. Sci Total Environ. 2000;249:347–71.PubMedCrossRefGoogle Scholar
  130. Newland MC, Reed MN, LeBlanc A, Donlin W. Brain and blood mercury and selenium after chronic and developmental exposure to methylmercury. Neurotoxicology. 2006;27:710–20.PubMedCrossRefGoogle Scholar
  131. Nogueira CW, Zeni G, Rocha JB. Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev. 2004;104:6255–86.PubMedCrossRefGoogle Scholar
  132. Nogueira CW, Rocha JBT. Diphenyl diselenide: a Janus faced compound. J Braz Chem Soc. 2010;21:2055–71.CrossRefGoogle Scholar
  133. Nogueira CW, Rocha JBT. Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch Toxicol. 2011;85:1313–59.PubMedCrossRefGoogle Scholar
  134. Orct T, Lazarus M, Ljubojević M, Sekovanić A, Sabolić I, Blanuša M. Metallothionein, essential elements and lipid peroxidation in mercury-exposed suckling rats pretreated with selenium. Biometals. 2015;28:701–12.PubMedCrossRefGoogle Scholar
  135. Ogawa-Wong AN, Mj B, Seale LA. Selenium and metabolic disorders: an emphasis on type 2 diabetes risk. Forum Nutr. 2016;8:1–19.Google Scholar
  136. Oliveira CS, Joshee L, Zalups RK, Bridges CC. Compensatory renal hypertrophy and the handling of an acute nephrotoxicant in a model of aging. Exp Gerontol. 2016;75:16–23.PubMedCrossRefGoogle Scholar
  137. Oliveira CS, Joshee L, Zalups RK, Pereira ME, Bridges CC. Disposition of inorganic mercury in pregnant rats and their offspring. Toxicology. 2015;335:62–71.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Oz SG, Tozlu M, Yalcin SS, Sozen T, Guven GS. Mercury vapor inhalation and poisoning of a family. Inhal Toxicol. 2012;24:652–8.PubMedCrossRefGoogle Scholar
  139. Pamphlett R, Kum Jew S. Uptake of inorganic mercury by human locus ceruleus and corticomotor neurons: implications for amyotrophic lateral sclerosis. Acta Neuropathol Commun. 2013;9:1–13.Google Scholar
  140. Parizek J, Ostadalova I. The protective effect of small amounts of selenite in sublimate intoxication. Experientia. 1967;23:142–3.PubMedCrossRefGoogle Scholar
  141. Peixoto NC, Pereira ME. Effectiveness of ZnCl2 in protecting against nephrotoxicity induced by HgCl2 in newborn rats. Ecotoxicol Environ Saf. 2007;66:441–6.PubMedCrossRefGoogle Scholar
  142. Peixoto NC, Roza T, Morsch VM, Pereira ME. Behavioral alterations induced by HgCl2 depend on the postnatal period of exposure. Int J Dev Neurosci. 2007;25:39–46.PubMedCrossRefGoogle Scholar
  143. Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos AP. Shape control of CdSe nanocrystals. Nature. 2000;404:59–61.PubMedCrossRefGoogle Scholar
  144. Peregrino CP, Moreno MV, Miranda SV, Rubio AD, Leal LO. Mercury levels in locally manufactured Mexican skin-lightening creams. Int J Environ Res Public Health. 2011;8:2516–23.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Peters MM, Hill KE, Burk RF, Weeber EJ. Altered hippocampus synaptic function in selenoprotein P deficient mice. Mol Neurodegener. 2006;1:1–13.CrossRefGoogle Scholar
  146. Pillai R, Uyehara-Lock JH, Bellinger FP. Selenium and selenoprotein function in brain disorders. IUBMB Life. 2014;66:229–39.PubMedCrossRefGoogle Scholar
  147. Pitts MW, Reeves MA, Hashimoto AC, Ogawa A, Kremer P, Seale LA, Berry MJ. Deletion of selenoprotein M leads to obesity without cognitive deficits. J Biol Chem. 2013;288:26121–34.PubMedPubMedCentralCrossRefGoogle Scholar
  148. Power JH, Blumbergs PC. Cellular glutathione peroxidase in human brain: cellular distribution, and its potential role in the degradation of Lewy bodies in Parkinson's disease and dementia with Lewy bodies. Acta Neuropathol. 2009;117:63–73.PubMedCrossRefGoogle Scholar
  149. Ralston NV, Raymond LJ. Dietary selenium's protective effects against methylmercury toxicity. Toxicology. 2010;278:112–23.PubMedCrossRefGoogle Scholar
  150. Raman AV, Pitts MW, Seyedali A, Hashimoto AC, Bellinger FP, Berry MJ. Selenoprotein W expression and regulation in mouse brain and neurons. Brain Behavior. 2013;3:562–74.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Raman AV, Pitts MW, Seyedali A, Hashimoto AC, Seale LA, Bellinger FP, Berry MJ. Absence of selenoprotein P but not selenocysteine lyase results in severe neurological dysfunction. Genes, Brain and Behav. 2012;11:601–13.CrossRefGoogle Scholar
  152. Rocha JBT, Piccoli BC, Oliveira CS. Biological and chemical interest in selenium: a brief historical account. ARKIVOC. 2017; doi: 10.3998/ark.5550190.p009.784.
  153. Rocha JBT, Saraiva RA, Garcia SC, Gravina FS, Nogueira CW. Aminolevulinate dehydratase (δ-ALA-D) as marker protein of intoxication with metals and other pro-oxidant situations. Toxicol Res. 2012;1:85–102.CrossRefGoogle Scholar
  154. Roos DH, Puntel RL, Santos MM, Souza DO, Farina M, Nogueira CW, Aschner M, Burger ME, Barbosa NB, Rocha JB. Guanosine and synthetic organoselenium compounds modulate methylmercury-induced oxidative stress in rat brain cortical slices: involvement of oxidative stress and glutamatergic system. Toxicol In Vitro. 2009;23:302–7.PubMedCrossRefGoogle Scholar
  155. Rosenfeld I, Beath OA. Selenium: geobotany, biochemistry, toxicity, and nutrition. Chapter 3. New York: Academic Press INC; 1964.Google Scholar
  156. Rowens B, Guerrero-Betancourt D, Gottlieb CA, Boyes RJ, Eichenhorn MS. Respiratory failure and death following acute inhalation of mercury vapor. A clinical and histologic perspective. Chest J. 1991;99:185–90.CrossRefGoogle Scholar
  157. Rueli RHLH, Parubrub AC, Dewing AST, Hashimoto AC, Bellinger MT, Weeber EJ, Uyehara-Lock JH, White LR, Berry MJ, Bellinger FP. Increased selenoprotein P in choroid plexus and cerebrospinal fluid in Alzheimer's disease brain. J Alzheimer’s Disease. 2015;44:379–83.Google Scholar
  158. Ruszkiewicz JA, Bowman AB, Farina M, Rocha JB, Aschner M. Sex-and structure-specific differences in antioxidant responses to methylmercury during early development. Neurotoxicology. 2016;56:118–26.PubMedCrossRefGoogle Scholar
  159. Savaskan NE, Borchert A, Bräuer AU, Kuhn H. Role for glutathione peroxidase-4 in brain development and neuronal apoptosis: specific induction of enzyme expression in reactive astrocytes following brain injury. Free Radic Biol Med. 2007;15:191–201.CrossRefGoogle Scholar
  160. Skalny AV, Simashkova NV, Klyushnik TP, Grabeklis AR, Radysh IV, Skalnaya MG, Nikonorov AA, Tinkov AA. Assessment of serum trace elements and electrolytes in children with childhood and atypical autism. J Trace Elem Med Biol. 2016a; doi: 10.1016/j.jtemb.2016.09.009.
  161. Skalny AV, Simashkova NV, Klyushnik TP, Grabeklis AR, Radysh IV, Skalnaya MG, Tinkov AA. Analysis of hair trace elements in children with autism Spectrum disorders and communication disorders. Biol Trace Elem Res. 2016b; doi: 10.1007/s12011-016-0878-x.
  162. Skalny AV, Simashkova NV, Klyushnik TP, Grabeklis AR, Bjørklund G, Skalnaya MG, Nikonorov AA, Tinkov AA. Hair toxic and essential trace elements in children with autism spectrum disorder. Metab Brain Dis. 2016c; doi: 10.1007/s11011-016-9899-6.
  163. Sugiura Y, Hojo Y, Tamai Y, Tanaka H. Letter: selenium protection against mercury toxicity. Binding of methylmercury by the selenohydryl-containing ligand. J Am Chem Soc. 1976;98:2339–41.PubMedCrossRefGoogle Scholar
  164. Sunde RA, Evenson JK. Serine incorporation into the selenocysteine moiety of glutathione peroxidase. J Biol Chem. 1987;15:933–7.Google Scholar
  165. Steinbrenner H, Sies H. Selenium homeostasis and antioxidant selenoproteins in brain: implications for disorders in the central nervous system. Arch Biochem Biophys. 2013;536:152–7.PubMedCrossRefGoogle Scholar
  166. Suzuki T, Himeno S, Hongo T, Watanabe C, Satoh H. Mercury-selenium interaction in workers exposed to elemental mercury vapor. J Appl Toxicol. 1986;6:149–53.PubMedCrossRefGoogle Scholar
  167. Tabatadze T, Zhorzholiani L, Kherkheulidze M, Kandelaki E, Ivanashvili T. Hair heavy metal and essential trace element concentration in children with autism spectrum disorder. Georgian Med News. 2015;248:77–82.Google Scholar
  168. Takagi Y, Mitsui A, Nishiyama A, Nozaki K, Sono H, Gon Y, Hashimoto N, Yodo J. Overexpression of thioredoxin in transgenic mice attenuates focal ischemic brain damage. Proc Natl Acad Sci U S A. 1999;96:4131–6.PubMedPubMedCentralCrossRefGoogle Scholar
  169. Trapp GA, Millam J. The distribution of 75Se in brains of selenium-deficient rats. J Neurochem. 1975;24:593–5.PubMedCrossRefGoogle Scholar
  170. Trelease SF, Di Somma AA, Jacobs AL. Seleno-amino acid found in Astragalus bisulcatus. Science. 1960;132:618.PubMedCrossRefGoogle Scholar
  171. Tsuda T, Yorifuji T, Takaob S, Miyai M, Babazono A. Minamata disease: catastrophic poisoning due to a failed public health response. J Public Health Policy. 2009;30:54–67.PubMedCrossRefGoogle Scholar
  172. United Nations Environment Programme (UNEP). Global Mercury Assessment. Sources, emissions, releases and environmental transport. UNEP: Geneva, Switzerland; 2013. p. 2013.Google Scholar
  173. Uzunhisarcikli M, Aslanturk A, Kalender S, Apaydin FG, Bas H. Mercuric chloride induced hepatotoxic and hematologic changes in rats: The protective effects of sodium selenite and vitamin E. Toxicol Ind Health. 2015:0748233715572561.Google Scholar
  174. Usuki F, Yamashita A, Fujimura M. Post-transcriptional defects of antioxidant selenoenzymes cause oxidative stress under methylmercury exposure. J Biol Chem. 2011;286:6641–9.PubMedCrossRefGoogle Scholar
  175. Vinceti M, Wei ET, Malagoli C, Bergomi M, Vivoli G. Adverse health effects of selenium in humans. Rev Environ Health. 2001;16:233–51.PubMedCrossRefGoogle Scholar
  176. Vinceti M, Maraldi T, Bergomi M, Malagoli C. Risk of chronic low-dose selenium overexposure in humans: insights from epidemiology and biochemistry. Rev Environ Health. 2009;24:231–48.PubMedCrossRefGoogle Scholar
  177. Vinceti M, Bonvicini F, Rothman KJ, Vescovi L, Wang F. The relation between amyotrophic lateral sclerosis and inorganic selenium in drinking water: a population-based case–control study. Environ Health. 2010;9:77.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Vinceti M, Crespi CM, Malagoli C, Bottecchi I, Ferrari A, Sieri S, Krogh V, Alber D, Bergomi M, Seidenari S, Pellacani G. A case–control study of the risk of cutaneous melanoma associated with three selenium exposure indicators. Tumori. 2012;98:287–95.PubMedPubMedCentralGoogle Scholar
  179. Vinceti M, Solovyev N, Mandrioli J, Crespi CM, Bonvivini F, Arcolin E, Georgoulopoulou E, Michalke B. Cerebrospinal fluido f newly diagnosed amyotrophic lateral sclerosis patients exhibits abnormal levels of selenium species including elevated selenite. Neurotoxicology. 2013;38:25–32.PubMedPubMedCentralCrossRefGoogle Scholar
  180. Vinceti M, Mandrioli J, Borella P, Michalke B, Tsatsakis A, Finkelstein Y. Selenium neurotoxicity in humans: bridging laboratory and epidemiologic studies. Toxicol Lett. 2014;230:295–303.PubMedCrossRefGoogle Scholar
  181. Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev. 2012;92:791–896.PubMedCrossRefGoogle Scholar
  182. Warfvinge K. Mercury distribution in the neonatal and adult cerebellum after mercury vapor exposure of pregnant squirrel monkeys. Environ Res. 2000;83:93–101.PubMedCrossRefGoogle Scholar
  183. Winkel LHE, Vriens B, Jones GD, Schneider LS, Pilon-Smits E, Bañuelos GS. Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Forum Nutr. 2015;7:4199–239.Google Scholar
  184. WHO (World Health Organization) (2003) Selenium in drinking-water: Background document for development of WHO guidelines for drinking-water quality.Google Scholar
  185. WHO (World Health Organization) (2007) Exposure to mercury: a major public health concern. Environmental Health Criteria. Geneva: World Health Organization.Google Scholar
  186. Wu Y, Guo X, Wang W, Chen X, Zhao Z, Xia X, Yang Y. Red pigments and Boraginaceae leaves in mortuary ritual of late Neolithic China: a case study of Shengedaliang site. Microsc Res Tech. 2016; doi: 10.1002/jemt.22791.
  187. Yamamoto R, Suzuki T, Satoh H, Kawais K. Generation and dose as modifying factors of inorganic mercury accumulation in brain, liver, and kidneys of rats fed methylmercury. Environ Res. 1986;41:309–18.PubMedCrossRefGoogle Scholar
  188. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science. 2008;322:587–90.PubMedPubMedCentralCrossRefGoogle Scholar
  189. Ye BJ, Kim BG, Jeon MJ, Kim SY, Kim HC, Jang TW, Chae HJ, Choi WJ, Ha MN, Hong YS. Evaluation of mercury exposure level, clinical diagnosis and treatment for mercury intoxication. Ann Occup Environ Med. 2016; doi: 10.1186/s40557-015-0086-8.
  190. Yu WH, Zhang N, Qi JF, Sun C, Wang YH, Lin M. Arsenic and mercury containing traditional chinese medicine (Realgar and cinnabar) strongly inhibit organic anion transporters, Oat1 and Oat3, in vivo in mice. Biomed Res Int. 2015; doi: 10.1155/2015/863971.
  191. Zalups RK. Molecular interactions with mercury in the kidney. Pharmacol Rev. 2000;52:113–43.PubMedGoogle Scholar
  192. Zhang L, Hu B, Li W, Che R, Deng K, Li H, Yu F, Ling H, Li Y, Chu C. OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol. 2014;201:1183–91.PubMedCrossRefGoogle Scholar
  193. Zhang Y, Jacob DJ, Horowitz HM, Chen L, Amos HM, Krabbenhoft DP, Slemr F, Louis VLS, Sunderland EM. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions. Proc Natl Acad Sci USA. 2016;113:526–31.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • C. S. Oliveira
    • 1
  • B. C. Piccoli
    • 1
  • M. Aschner
    • 2
  • J. B. T. Rocha
    • 1
    • 3
    Email author
  1. 1.Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e ExatasUniversidade Federal de Santa MariaSanta MariaBrazil
  2. 2.Department of Molecular PharmacologyAlbert Einstein College of MedicineNew YorkUSA
  3. 3.Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e ExatasUniversidade Federal de Santa MariaSanta MariaBrazil

Personalised recommendations