Advertisement

Manganese and Developmental Neurotoxicity

  • Roberto LucchiniEmail author
  • Donatella Placidi
  • Giuseppa Cagna
  • Chiara Fedrighi
  • Manuela Oppini
  • Marco Peli
  • Silvia Zoni
Chapter
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 18)

Abstract

Manganese (Mn) is an essential metal that plays a fundamental role for brain development and functioning. Environmental exposure to Mn may lead to accumulation in the basal ganglia and development of Parkinson-like disorders. The most recent research is focusing on early-life overexposure to Mn and the potential vulnerability of younger individuals to Mn toxicity also in regard to cognitive and executive functions through the involvement of the frontal cortex.

Neurodevelopmental disturbances are increasing in the society, and understanding the potential role of environmental determinants is a key for prevention. Therefore, assessing the environmental sources of Mn exposure and the mechanisms of developmental neurotoxicity and defining appropriate biomarkers of exposure and early functional alterations represent key issues to improve and address preventive strategies. These themes will be reviewed in this chapter.

Keywords

Basal ganglia Vehicle emissions Methylcyclopentadienyl Mn tricarbonyl (MMT) Fungicides Deposited dust Revised Conners’ Teacher Rating Scale Wechsler Intelligence Scale for Children (WISC) Olfactory loss 

References

  1. Abdullah MM, Ly AR, Goldberg WA, Clarke-Stewart KA, Dudgeon JV, Mull CG, Chan TJ, Kent EE, Mason AZ, Ericson JE. Heavy metal in children’s tooth enamel: related to autism and disruptive behaviors? J Autism Dev Disord. 2012;42(6):929–36.PubMedCrossRefGoogle Scholar
  2. Adriano DC. Trace elements in terrestrial environments. Biogeochemistry, bioavailability and risks of metals. New York: Springer; 2001. 867 p.CrossRefGoogle Scholar
  3. Andra SS, Austin C, Arora M. Tooth matrix analysis for biomonitoring of organic chemical exposure: current status, challenges, and opportunities. Environ Res. 2015;142:387–406.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Arora M, et al. Determining fetal manganese exposure from mantle dentine of deciduous teeth. Environ Sci Technol. 2012;46(9):5118–25.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Aschner M, Erikson KM, Dorman DC. Manganese dosimetry: species differences and implications for neurotoxicity. Crit Rev Toxicol. 2005;35(1):1–32.PubMedCrossRefGoogle Scholar
  6. ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological profile for manganese [ATSDR Tox profile]. Atlanta: U.S. Department of Health and Human Services, Public Health Service; 2012.Google Scholar
  7. Barker D, Barker M, Fleming T, Lampl M. Developmental biology: support mothers to secure future public health. Nature. 2013;504(7479):209–11. ReviewPubMedCrossRefGoogle Scholar
  8. Beaudin SA, Strupp BJ, Lasley SM, Fornal CA, Mandal S, Smith DR. Oral methylphenidate alleviates the fine motor dysfunction caused by chronic postnatal manganese exposure in adult rats. Toxicol Sci. 2015;144(2):318–27.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Benko CR, Cordeiro ML, Costa MT, Cunha A, Farias AC, et al. Manganese in children with attention-deficit/hyperactivity disorder: relationship with methylphenidate exposure. J Child Adolesc Psychopharmacol. 2010;20:113.PubMedCrossRefGoogle Scholar
  10. Berglund M, Lindberg AL, Rahman M, Yunus M, Grandér M, Lönnerdal B, Vahter M. Gender and age differences in mixed metal exposure and urinary excretion. Environ Res. 2011;111(8):1271–9.PubMedCrossRefGoogle Scholar
  11. Bhang SY, Cho SC, Kim JW, Hong YC, Shin MS, Yoo HJ, Cho IH, Kim Y, Kim BN. Relationship between blood manganese levels and children’s attention, cognition, behavior, and academic performance–a nationwide cross-sectional study. Environ Res. 2013;126:9–16. ReviewPubMedCrossRefGoogle Scholar
  12. Borgese L, Federici S, Zacco A, Gianoncelli A, Rizzo L, Smith DR, Donna F, Lucchini R, Depero LE, Bontempi E. Metal fractionation in soils and assessment of environmental contamination in Vallecamonica. Italy Environ Sci Pollut Res. 2013;20:5067–75.CrossRefGoogle Scholar
  13. Bouchard M, Laforest F, Vandelac L, Bellinger D, Mergler D. Hair manganese and hyperactive behaviors: pilot study of school-age children exposed through tap water. Environ Health Perspect. 2007;115(1):122–7.PubMedCrossRefGoogle Scholar
  14. Bouchard MF, Sauvé S, Barbeau B, Legrand M, Brodeur MÈ, Bouffard T, Limoges E, Bellinger DC, Mergler D. Intellectual impairment in school-age children exposed to manganese from drinking water. Environ Health Perspect. 2011;119(1):138–43.PubMedCrossRefGoogle Scholar
  15. Bowler RM, Kornblith ES, Gocheva VV, Colledge MA, Bollweg G, Kim Y, Beseler CL, Wright CW, Adams SW, Lobdell DT. Environmental exposure to manganese in air: associations with cognitive functions. Neurotoxicology. 2015;49:139–48. ReviewPubMedPubMedCentralCrossRefGoogle Scholar
  16. Carrizales L, Razo I, Tellez-Hernandez JI, Torres-Nerio R, Torres A, Batres LE, Cubillas AC, Dıaz-Barriga F. Exposure to arsenic and lead of children living near a Cu-smelter in San Luis Potosi, Mexico: importance of soil contamination for exposure of children. Environ Res. 2006;101:1–10.PubMedCrossRefGoogle Scholar
  17. Carvalho CF, Menezes-Filho JA, de Matos VP, Bessa JR, Coelho-Santos J, Viana GF, Argollo N, Abreu N. Elevated airborne manganese and low executive function in school-aged children in Brazil. Neurotoxicology. 2014;45:301–8.PubMedCrossRefGoogle Scholar
  18. Chung SE, Cheong HK, Ha EH, Kim BN, Ha M, Kim Y, Hong YC, Park H, Oh SY. Maternal blood manganese and early neurodevelopment: the mothers and children’s environmental health (MOCEH) study. Environ Health Perspect. 2015;123(7):717–22.PubMedPubMedCentralGoogle Scholar
  19. Claus Henn B, Ettinger AS, Schwartz J, Téllez-Rojo MM, Lamadrid-Figueroa H, Hernández-Avila M, Schnaas L, Amarasiriwardena C, Bellinger DC, Hu H, Wright RO. Early postnatal blood manganese levels and children’s neurodevelopment. Epidemiology. 2010;21(4):433–9.PubMedCrossRefGoogle Scholar
  20. Claus Henn B, Schnaas L, Ettinger AS, Schwartz J, Lamadrid-Figueroa H, Hernández-Avila M, Amarasiriwardena C, Hu H, Bellinger DC, Wright RO, Téllez-Rojo MM. Associations of early childhood manganese and lead coexposure with neurodevelopment. Environ Health Perspect. 2012;120(1):126–31.PubMedCrossRefGoogle Scholar
  21. Coetzee DJ, McGovern PM, Rao R, Harnack LJ, Georgieff MK, Stepanov I. Measuring the impact of manganese exposure on children’s neurodevelopment: advances and research gaps in biomarker-based approaches. Environ Health. 2016;15(1):91.PubMedPubMedCentralCrossRefGoogle Scholar
  22. DeWitt MR, Chen P, Aschner M. Manganese efflux in Parkinsonism: insights from newly characterized SLC30A10 mutation. Biochem Biophys Res Commun. 2013;432:1–4.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135–68.PubMedCrossRefGoogle Scholar
  24. Eastman RR, Jursa TP, Benedetti C, Lucchini RG, Smith DR. Hair as a biomarker of environmental manganese exposure. Environ Sci Technol. 2013;47(3):1629–37.PubMedPubMedCentralGoogle Scholar
  25. Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdorster G. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect. 2006;114:1172–8.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Erikson KM, Thompson K, Aschner J, Aschner M. Manganese neurotoxicity: a focus on the neonate. Pharmacol Ther. 2007;113(2):369–77.PubMedCrossRefGoogle Scholar
  27. Farias AC, et al. Manganese in children with attention-deficit/hyperactivity disorder: relationship with methylphenidate exposure. J Child Adolesc Psychopharmacol. 2010;20(2):113–8.PubMedCrossRefGoogle Scholar
  28. Ferri R, Donna F, Smith DR, Guazzetti S, Zacco A, Rizzo L, Bontempi E, Zimmerman NJ, Lucchini RG. Heavy metals in soil and salad in the proximity of historical ferroalloy emission. J Environ Prot. 2012;3:374–85.CrossRefGoogle Scholar
  29. Ferri R, Hashim D, Smith DR, Guazzetti S, Donna F, Ferretti E, Curatolo M, Moneta C, Beone GM, Lucchini RG. Metal contamination of home garden soils and cultivated vegetables in the province of Brescia, Italy: implications for human exposure. Sci Total Environ. 2015;518–519:507–17.PubMedCrossRefGoogle Scholar
  30. Food and Agriculture Organization of the United Nations (FAO), Maneb manganese ethylenebisdithiocarbamate. FAP Specifications, FAO Protection Products, Rome, Italy. 1979.Google Scholar
  31. Frisbie SH, Mitchell EJ, Dustin H, Maynard DM, Sarkar B. World Health Organization discontinues its drinking-water guideline for manganese. Environ Health Perspect. 2012;120(6):775–8.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fu S, Jung W, Gao X, Zeng A, Cholger D, Cannon J, Chen J, Zheng W. Aberrant adult neurogenesis in the Subventricular zone-rostral migratory stream-olfactory bulb system following Subchronic manganese exposure. Toxicol Sci. 2016;150(2):347–68.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Fulk F, Haynes EN, Hilbert TJ, Brown D, Petersen D, Reponen T. Comparison of stationary and personal air sampling with an air dispersion model for children’s ambient exposure to manganese. J Expos Sci Environ Epidemiol. 2016;26(5):494–502.CrossRefGoogle Scholar
  34. Gonzalez-Merizalde MV, Menezes-Filho JA, Cruz-Erazo CT, Bermeo-Flores SA, Sanchez-Castillo MO, Hernandez-Bonilla D, Mora A. 2016. Manganese and mercury levels in water, sediments, and children living near gold-mining areas of the Nangaritza River basin, Ecuadorian Amazon. Archives Environ Contam Toxicol. 2016;71:171–82.CrossRefGoogle Scholar
  35. Guan H, Wang M, Li X, Piao F, Li Q, Xu L, Kitamura F, Yokoyama K. Manganese concentrations in maternal and umbilical cord blood: related to birth size and environmental factors. Eur J Pub Health. 2014;24(1):150–7.CrossRefGoogle Scholar
  36. Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014;13(3):330–8.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Guarneros M, Ortiz-Romo N, Alcaraz-Zubeldia M, Drucker-Colín R, Hudson R. Nonoccupational environmental exposure to manganese is linked to deficits in peripheral and central olfactory function. Chem Senses. 2013;38(9):783–91.PubMedCrossRefGoogle Scholar
  38. Guilarte TR. Manganese neurotoxicity: new perspectives from behavioral neuroimaging, and neuropathological studies in humans and non-human primates. Front Aging Neurosci. 2013;5:23.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gulson B, Mizon K, Taylor A, Korsch M, Davis JM, Louie H, Wu M, Gomez L, Antin L. Pathways of Pb and Mn observed in a 5-year longitudinal investigation in young children and environmental measures from an urban setting. Environ Pollut. 2014;191:38–49.PubMedCrossRefGoogle Scholar
  40. Gulson B, Mizon K, Taylor A, Korsch M, Stauber J, Davis MJ, Louie H, Wu M, Swan H. Changes in manganese and lead in the environment and young children associated with the introduction of methylcyclopentadienyl manganese tricarbonyl in gasoline—preliminary results. Environ Res. 2006;100:100–14.PubMedCrossRefGoogle Scholar
  41. Gunier RB, Arora M, Jerrett M, Bradman A, Harley KG, Mora AM, Kogut K, Hubbard A, Austin C, Holland N, Eskenazi B. Manganese in teeth and neurodevelopment in young Mexican-American children. Environ Res. 2015;142:688–95.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gunier RB, Bradman A, Jerrett M, Smith DR, Harley KG, Austin C, Vedar M, Arora M, Eskenazi B. Determinants of manganese in prenatal dentin of shed teeth from CHAMACOS children living in an agricultural community. Environ Sci Technol. 2013;47:11249–57.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Harris AR, Davidson CI. The role of resuspended soil in lead flows in the California south coast Air Basin. Environ Sci Technol. 2005;39(19):7410–5.PubMedCrossRefGoogle Scholar
  44. Haynes EN, Heckel P, Ryan P, Roda S, Leung YK, Sebastian K, Succop P. Environmental manganese exposure in residents living near a ferromanganese refinery in Southeast Ohio: a pilot study. Neurotoxicology. 2010;31(5):468–74.PubMedCrossRefGoogle Scholar
  45. Haynes EN, Ryan P, Chen A, Brown D, Roda S, Kuhnell P, Wittberg D, Terrell M, Reponen T. Assessment of personal exposure to manganese in children living near a ferromanganese refinery. Sci Total Environ. 2012;427–428:19–25.PubMedCrossRefGoogle Scholar
  46. Haynes EN, Sucharew H, Kuhnell P, Alden J, Barnas M, Wright RO, Parsons PJ, Aldous KM, Praamsma ML, Beidler C, Dietrich KN. Manganese exposure and neurocognitive outcomes in rural school-age children: the communities actively researching exposure study (Ohio, USA). Environ Health Perspect. 2015;123(10):1066–71.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hong SB, Kim JW, Choi BS, Hong YC, Park EJ, Shin MS, Kim BN, Yoo HJ, Cho IH, Bhang SY, Cho SC. Blood manganese levels in relation to comorbid behavioral and emotional problems in children with attentiondeficit/hyperactivity disorder. Psychiatry Res 2014;220(1–2):418–25.Google Scholar
  48. Hernández-Bonilla D, Schilmann A, Montes S, Rodríguez-Agudelo Y, Rodríguez-Dozal S, Solís-Vivanco R, Ríos C, Riojas-Rodríguez H. Environmental exposure to manganese and motor function of children in Mexico. Neurotoxicology. 2011;32(5):615–21.PubMedCrossRefGoogle Scholar
  49. Hough RL, Breward N, Young SD, Crout NMJ, Tye AM, Moir AM, Thornton I. Assessing potential risk of heavy metal exposure from consumption of homeproduced vegetables by urban populations. Environ Health Perspect. 2004;112(2):215–21.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hummel T, Sekinger B, Wolf SR, Pauli E, Kobal G. ‘Sniffin’ sticks’: olfactory performance assessed by the combined testing of odour identification, odor discrimination and olfactory threshold. Chem Senses. 1997;22:39–52.PubMedCrossRefGoogle Scholar
  51. Iannilli E, Gasparotti R, Hummel T, Zoni S, Benedetti C, Fedrighi C, Ying Tang C, Van Thriel C, Lucchini RG, et al. PLoS One. 2016:11(1).Google Scholar
  52. IOM. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. Washington, DC: Institute of Medicine, Food and Nutrition Board/National Academy Press; 2002. p. 10-1–10-22.Google Scholar
  53. Kern CH, Stanwood GD, Smith DR. Preweaning manganese exposure causes hyperactivity, disinhibition, and spatial learning and memory deficits associated with altered dopamine receptor and transporter levels. Synapse. 2010;64(5):363–78.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Khan K, et al. Manganese exposure from drinking water and children’s classroom behavior in Bangladesh. Environ Health Perspect. 2011;119(10):1501–6.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Khan K, Wasserman GA, Liu X, Ahmed E, Parvez F, Slavkovich V, Levy D, Mey J, Van Geen A, Graziano JH, Factor-Litvak P. Manganese exposure from drinking water and children’s academic achievement. Neurotoxicology. 2012;33(1):91–7.PubMedCrossRefGoogle Scholar
  56. Kim SH, Chang KH, Chi JG, Cheong HK, Kim JY, Kim YM, Han MH. Sequential change of MR signal intensity of the brain after manganese administration in rabbits. Correlation with manganese concentration and histopathologic findings. Investig Radiol. 1999;34(6):383–93.CrossRefGoogle Scholar
  57. Kim Y, Kim BN, Hong YC, Shin MS, Yoo HJ, Kim JW, Bhang SY, Cho SC. Co-exposure to environmental lead and manganese affects the intelligence of school-aged children. Neurotoxicology. 2009;30(4):564–71.PubMedCrossRefGoogle Scholar
  58. Laohaudomchok W, Lin X, Herrick RF, Fang SC, Cavallari JM, Christiani DC, Weisskopf MG. Toenail, blood and urine as biomarkers of manganese exposure. J Occup Environ Med. 2011;53(5):506–10.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lezak MD, Howieson DB, Bigler ED, et al. Neuropsychological assessment. New York: Oxford University Press; 2012.Google Scholar
  60. Lin CC, Chen YC, Su FC, Lin CM, Liao HF, Hwang YH, Hsieh WS, Jeng SF, Su YN, Chen PC. In utero exposure to environmental lead and manganese and neurodevelopment at 2 years of age. Environ Res. 2013;123:52–7.PubMedCrossRefGoogle Scholar
  61. Lioy PJ, Freeman NCG, Millette JR. Dust: a metric for use in residential and building exposure assessment and source characterization. Environ Health Persp. 2002;110:969–83.CrossRefGoogle Scholar
  62. Liu W, Huo X, Liu D, Zeng X, Zhang Y, Xu X. S100β in heavy metal-related child attention-deficit hyperactivity disorder in an informal e-waste recycling area. Neurotoxicology. 2014;45:185–91.PubMedCrossRefGoogle Scholar
  63. Ljung K, Vahter M. Time to re-evaluate the guideline value for manganese in drinking water? Environ Health Perspect. 2007;115(11):1533–8. ReviewPubMedPubMedCentralCrossRefGoogle Scholar
  64. Ljung KS, Kippler MJ, Goessler W, Grandér GM, Nermell BM, Vahter ME. Maternal and early life exposure to manganese in rural Bangladesh. Environ Sci Technol. 2009;43(7):2595–601.PubMedCrossRefGoogle Scholar
  65. Lucas EL, Bertrand P, Guazzetti S, Donna F, Peli M, Jursa TP, Lucchin R, Smith DR. Impact of ferromanganese alloy plants on household dust manganese levels: implications for childhood exposure. Environ Res. 2015;138:279–90.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lucchini RG, Zoni S, Guazzetti S, Bontempi E, Micheletti S, Broberg K, Parrinello G, Smith DR. Inverse association of intellectual function with very low blood lead but not with manganese exposure in Italian adolescents. Environ Res. 2012a;118:65–71.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lucchini RG, Guazzetti S, Zoni S, Donna F, Peter S, Zacco A, Salmistraro M, Bontempi E, Zimmerman NJ, Smith DR. Tremor, olfactory and motor changes in Italian adolescents exposed to historical ferro-manganese emission. Neurotoxicology. 2012b;33(4):687–96.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lucchini RG, Dorman DC, Elder A, Veronesi B, et al. Neurotoxicology. 2012c;33:838–41.PubMedCrossRefGoogle Scholar
  69. Lucchini RG, Guazzetti S, Zoni S, Benedetti C, Fedrighi C, Peli M, Donna F, Bontempi E, Borgese L, Micheletti S, Ferri R, Marchetti S, Smith DR. Neurofunctional dopaminergic impairment in elderly after lifetime exposure to manganese. Neurotoxicology. 2014;45:309–17.PubMedCrossRefGoogle Scholar
  70. Madison JL, Wegrzynowicz M, Aschner M, Bowman AB. Gender and manganese exposure interactions on mouse striatal neuron morphology. Neurotoxicology. 2011;32(6):896–906.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Menezes-Filho JA, Bouchard M, Sarcinelli P, Moreira JC. Manganese exposure and the neuropsychological effect on children and adolescents: a review. Rev Panam Salud Publica. 2009a;26(6):541–8.PubMedCrossRefGoogle Scholar
  72. Menezes-Filho JA, Paes CR, Pontes AM, Moreira JC, Sarcinelli PN, Mergler D. High levels of hair manganese in children living in the vicinity of a ferro—manganese alloy production plant. Neurotoxicology. 2009b;30:1207–13.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Menezes-Filho JA, Novaes Cde O, Moreira JC, Sarcinelli PN, Mergler D. Elevated manganese and cognitive performance in school-aged children and their mothers. Environ Res. 2011;111(1):156–63.PubMedCrossRefGoogle Scholar
  74. Menezes-Filho JA, de Carvalho-Vivas CF, Viana GF, Ferreira JR, Nunes LS, Mergler D, et al. Elevated manganese exposure and school-aged children’s behavior: a gender-stratified analysis. Neurotoxicology. 2014;45:293–300.PubMedCrossRefGoogle Scholar
  75. Menezes-Filho JA, De Souza KOF, Rodrigues JLG, dos Santos NR, Bandeira MD, Koin NL, Oliveira SSD, Leonor A, Godoy PC, Mergler D. Manganese and lead in dust fall accumulation in elementary schools near a ferromanganese alloy plant. Environ Res. 2016;148:322–9.PubMedCrossRefGoogle Scholar
  76. Millaleo R, Reyes-Diaz M, Ivanov AG, Mora ML, Alberdi M. Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr. 2010;10:470–81.CrossRefGoogle Scholar
  77. Miller BL, Cummings JL. The human frontal lobes. New York: The Guilford Press; 2007.Google Scholar
  78. Mora AM, Arora M, Harley KG, Kogut K, Parra K, Hernández-Bonilla D, Gunier RB, Bradman A, Smith DR, Eskenazi B. Prenatal and postnatal manganese teeth levels and neurodevelopment at 7, 9, and 10.5 years in the CHAMACOS cohort. Environ Int. 2015;84:39–54.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Nadaska G, Lesny J, Michalik I, Environmental aspect of manganese chemistry. 2012. http://heja.szif.hu/ENV/ENV-100702-A/env100702a.pdf. Accessed 22 Aug 2016.
  80. Nascimento S, Baierle M, Göethel G, Barth A, Brucker N, Charão M, Sauer E, Gauer B, Arbo MD, Altknecht L, Jager M, Dias AC, de Salles JF, Saint Pierre T, Gioda A, Moresco R, Garcia SC. Associations among environmental exposure to manganese, neuropsychological performance, oxidative damage and kidney biomarkers in children. Environ Res. 2016;147:32–43.PubMedCrossRefGoogle Scholar
  81. Oulhote Y, Mergler D, Bouchard MF. Sex- and age-differences in blood manganese levels in the U.S. general population: national health and nutrition examination survey 2011–2012. Environ Health. 2014;13:87.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Parvez F, Wasserman GA, Factor-Litvak P, Liu X, Slavkovich V, Siddique AB, Sultana R, Sultana R, Islam T, Levy D, Mey JL, van Geen A, Khan K, Kline J, Ahsan H, Graziano JH. Arsenic exposure and motor function among children in Bangladesh. Environ Health Perspect. 2011;119(11):1665–70.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Pavilonis BT, Lioy PJ, Guazzetti S, Bostick BC, Donna F, Peli M, Zimmerman NJ, Bertrand P, Lucas EL, Smith DR, Georgopoulos PG, Mi Z, Royce SG, Lucchini RG. Manganese concentrations in soil and settled dust in an area with historic ferroalloy production. J Expos Sci Environ Epidemiol. 2014;1–8Google Scholar
  84. Pearson GF, Greenway GM. Recent developments in manganese speciation. Trac-Trends Anal Chem. 2005;24(9):803–9.CrossRefGoogle Scholar
  85. Poulakis E, Theodosi C, Bressi M, Sciare J, Ghersi V, Mihalopoulos N. Airborne mineral components and trace metals in Paris region: spatial and temporal variability. Environ Sci Pollut Res Int. 2015;22(19):14663–72.PubMedCrossRefGoogle Scholar
  86. Pruvot C, Douay F, Herve F, Waterlot C. Heavy metals in soil, crops and grass as a source of human exposure in the former mining areas. J Soil Sedim. 2006;6:215–20.CrossRefGoogle Scholar
  87. Rahbar MH, Samms-Vaughan M, Dickerson AS, Loveland KA, Ardjomand-Hessabi M, Bressler J, Shakespeare-Pellington S, Grove ML, Pearson DA, Boerwinkle E. Blood manganese concentrations in Jamaican children with and without autism spectrum disorders. Environ Health 2014;13:69.Google Scholar
  88. Rahman SM, Kippler M, Tofail F, Bölte S, Hamadani JD, Vahter M. Manganese in drinking water and cognitive abilities and behavior at 10 years of age: a prospective cohort study. Environ Health Perspect. 2016.; [Epub ahead of print]Google Scholar
  89. Rink SM, Ardoino G, Queirolo EI, Cicariello D, Mañay N, Kordas K. Associations between hair manganese levels and cognitive, language, and motor development in preschool children from Montevideo. Uruguay Arch Environ Occup Health. 2014;69(1):46–54.PubMedCrossRefGoogle Scholar
  90. Riojas-Rodríguez H, Solís-Vivanco R, Schilmann A, Montes S, Rodríguez S, Ríos C, Rodríguez-Agudelo Y. Intellectual function in Mexican children living in a mining area and environmentally exposed to manganese. Environ Health Perspect. 2010;118(10):1465–70.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Roberts AL, Lyall K, Hart JE, Laden F, Just AC, Bobb JF, et al. Perinatal air pollutant exposures and autism spectrum disorder in the children of nurses’ health study II participants. Environ Health Perspect. 2013;121:978–84.PubMedPubMedCentralGoogle Scholar
  92. Rodrigues EG, Bellinger DC, Valeri L, Hasan MO, Quamruzzaman Q, Golam M, Kile ML, Christiani DC, Wright RO, Mazumdar M. Neurodevelopmental outcomes among 2- to 3-year-old children in Bangladesh with elevated blood lead and exposure to arsenic and manganese in drinking water. Environ Health. 2016;15:44.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Rossignol DA, Genuis SJ, Frye RE. Environmental toxicants and autism spectrum disorders: a systematic review. Transl Psychiatry. 2014;4:e360.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Rugless F, Bhattacharya A, Succop P, Dietrich KN, Cox C, Alden J, Kuhnell P, Barnas M, Wright R, Parsons PJ, Praamsma ML, Palmer CD, Beidler C, Wittberg R, Haynes EN. Childhood exposure to manganese and postural instability in children living near a ferromanganese refinery in southeastern Ohio. Neurotoxicol Teratol. 2014;41:71–9.PubMedCrossRefGoogle Scholar
  95. Sanders AP, Claus Henn B, Wright RO. Perinatal and childhood exposure to cadmium, manganese, and metal mixtures and effects on cognition and behavior: a review of recent literature. Curr Environ Health Rep. 2015;2(3):284–94. ReviewPubMedPubMedCentralCrossRefGoogle Scholar
  96. Sharma A, Couture J. A review of the pathophysiology, etiology, and treatment of attention-deficithyperactivity disorder (ADHD). Ann Pharmacother 2014;48(2):209–25.Google Scholar
  97. SIVR, Società Italiana Valori di Riferimento. Valori di riferimento degli elementi di interesse biologico e tossicologico, 2011. http://www.valoridiriferimento.it
  98. Smith D, Gwiazda R, Bowler R, et al. Biomarkers of Mn exposure in humans. Am J Ind Med. 2007;50:801–11.PubMedCrossRefGoogle Scholar
  99. Stuss DT, Alexander MP. Is there a dysexecutive syndrome? Philos Trans R Soc Lond Ser B Biol Sci. 2007;362(1481):901–15. ReviewCrossRefGoogle Scholar
  100. Takser L, Mergler D, de Grosbois S, Smargiassi A, Lafond J. Blood manganese content at birth and cord serum prolactin levels. Neurotoxicol Teratol. 2004;26(6):811–5.PubMedCrossRefGoogle Scholar
  101. Tarrade A, Panchenko P, Junien C, Gabory A. Placental contribution to nutritional programming of health and diseases: epigenetics and sexual dimorphism. J Exp Biol. 2015;218(Pt 1):50–8. ReviewPubMedCrossRefGoogle Scholar
  102. Thorpe A, Harrison RM. Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Total Environ. 2008;400(1–3):270–82.PubMedCrossRefGoogle Scholar
  103. Torres-Agustín R, Rodríguez-Agudelo Y, Schilmann A, Solís-Vivanco R, Montes S, Riojas-Rodríguez H, Cortez-Lugo M, Ríos C. Effect of environmental manganese exposure on verbal learning and memory in Mexican children. Environ Res. 2013;121:39–44.PubMedCrossRefGoogle Scholar
  104. US Environmental Protection Agency. Health effects support document for manganese. Washington, DC: US EPA, Office of Water; 2002.Google Scholar
  105. US Environmental Protection Agency. User’s guide for the AMS/EPA regulatory model AERMOD. Washington, DC: US EPA; 2005. EPA-454/B-03-001Google Scholar
  106. Vorhees CV, Graham DL, Amos-Kroohs RM, Braun AA, Grace CE, Schaefer TL, Skelton MR, Erikson KM, Aschner M, Williams MT. Effects of developmental manganese, stress, and the combination of both on monoamines, growth, and corticosterone. Toxicol Rep. 2014;1:1046–61.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Walsh MP. The global experience with lead in gasoline and the lessons we should apply to the use of MMT. Am J Ind Med. 2007;50(11):853–60.PubMedCrossRefGoogle Scholar
  108. Wasserman GA, Liu X, Parvez F, Ahsan H, Levy D, Factor-Litvak P, Kline J, van Geen A, Slavkovich V, LoIacono NJ, Cheng Z, Zheng Y, Graziano JH. Water manganese exposure and children’s intellectual function in Araihazar. Bangladesh Environ Health Perspect. 2006;114(1):124–9.PubMedGoogle Scholar
  109. Wasserman GA, Liu X, Parvez F, Factor-Litvak P, Ahsan H, Levy D, Kline J, van Geen A, Mey J, Slavkovich V, Siddique AB, Islam T, Graziano JH. Arsenic and manganese exposure and children’s intellectual function. Neurotoxicology 2011;32(4):450–7.Google Scholar
  110. WHO (World Health Organization). Guidelines for Drinking-Water Quality. 4th ed. Geneva: WHO; 2011b.Google Scholar
  111. Wright RO, Amarasiriwardena C, Woolf AD, Jim R, Bellinger DC. Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. Neurotoxicology. 2006;27(2):210–6.PubMedCrossRefGoogle Scholar
  112. Ye Q, Kim J. Loss of the function reverses impaired recognition memory caused by olfactory manganese exposure in mice. Toxicol Res. 2015;31(1):17–23.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Zheng W, Fu SX, Dydak U, Cowan DM. Biomarkers of manganese intoxication. Neurotoxicology. 2011;32(1):1–8.PubMedCrossRefGoogle Scholar
  114. Zoni S, Bonetti G, Lucchini R. Olfactory functions at the intersection between environmental exposure to manganese and Parkinsonism. J Trace Elem Med Biol. 2012;26(2–3):179–82.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Zoni S, Lucchini RG. Manganese exposure: cognitive, motor and behavioral effects on children: a review of recent findings. Curr Opin Pediatr. 2013;25(2):255–60.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Zota AR, Schaider LA, Ettinger AS, Wright RO, Shine JP, Spengler JD. Metal sources and exposures in the homes of young children living near a mining impacted superfund site. J Expo Sci Environ Epidemiol. 2011;21:495–505.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Zota AR, Riederer AM, Ettinger AS, Schaider LA, Shine JP, Amarasiriwardena CJ, Wright RO, Spengler JD. Associations between metals in residential environmental media and exposure biomarkers over time in infants living near a mining-impacted site. J Expos Sci Environ Epidemiol. 2016;26(5):510–9.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Roberto Lucchini
    • 1
    • 2
    Email author
  • Donatella Placidi
    • 2
  • Giuseppa Cagna
    • 2
  • Chiara Fedrighi
    • 2
  • Manuela Oppini
    • 2
  • Marco Peli
    • 2
  • Silvia Zoni
    • 2
  1. 1.Department of Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Department of Medical and Surgical Specialties, Radiological Sciences and Public HealthUniversity of BresciaBresciaItaly

Personalised recommendations