Skip to main content

Neurodegeneration Induced by Metals in Caenorhabditis elegans

  • Chapter
  • First Online:
Neurotoxicity of Metals

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 18))

Abstract

Metals are a component of a variety of ecosystems and organisms. They can generally be divided into essential and nonessential metals. The essential metals are involved in physiological processes once the deficiency of these metals has been associated with diseases. Although iron, manganese, copper, and zinc are important for life, it has been evidenced that they are also involved in neuronal damage in many neurodegenerative disorders. Nonessential metals, which are metals without physiological functions, are present in trace or higher levels in living organisms. Occupational, environmental, or deliberate exposures to lead, mercury, aluminum, and cadmium are clearly correlated with the increase of toxicity and varied kinds of pathological situations. Actually, the field of neurotoxicology needs to satisfy two opposing demands: the testing of a growing list of chemicals and resource limitations and ethical concerns associated with testing using traditional mammalian species. Toxicological assays using alternative animal models may relieve some of this pressure by allowing testing of more compounds while reducing expenses and using fewer mammals. The nervous system is by far the more complex system in C. elegans. Almost a third of their cells are neurons (302 neurons versus 959 cells in adult hermaphrodite). It initially underwent extensive development as a model organism in order to study the nervous system, and its neuronal lineage and the complete wiring diagram of its nervous system are stereotyped and fully described. The neurotransmission systems are phylogenetically conserved from nematodes to vertebrates, which allows for findings from C. elegans to be extrapolated and further confirmed in vertebrate systems. Different strains of C. elegans offer a new perspective on neurodegenerative processes. Some genes have been found to be related to neurodegeneration induced by metals. Studying these interactions may be an effective tool to slow neuronal loss and deterioration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aisen P, Enns C, Wessling-Resnick M. Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol. 2001;33(10):940–59.

    Article  CAS  PubMed  Google Scholar 

  • Alfrey AC, LeGendre GR, Kaehny WD. The dialysis encephalopathy syndrome. Possible aluminum intoxication. N Engl J Med. 1976;294(4):184–8. doi:10.1056/NEJM197601222940402.

    Article  CAS  PubMed  Google Scholar 

  • Anderson GL, Cole RD, Williams PL. Assessing behavioral toxicity with Caenorhabditis elegans. Environ Toxicol Chem. 2004;23(5):1235–40.

    Article  CAS  PubMed  Google Scholar 

  • Angeli S, Barhydt T, Jacobs R, Killilea DW, Lithgow GJ, Andersen JK. Manganese disturbs metal and protein homeostasis in Caenorhabditis elegans. Metallomics : integrated biometal science. 2014;6(10):1816–23. doi:10.1039/c4mt00168k.

    Article  CAS  Google Scholar 

  • Antonio MT, Corredor L, Leret ML. Study of the activity of several brain enzymes like markers of the neurotoxicity induced by perinatal exposure to lead and/or cadmium. Toxicol Lett. 2003;143(3):331–40.

    Article  CAS  PubMed  Google Scholar 

  • Aschner M, Syversen T. Methylmercury: recent advances in the understanding of its neurotoxicity. Ther Drug Monit. 2005;27(3):278–83.

    Article  PubMed  Google Scholar 

  • Au C, Benedetto A, Aschner M. Manganese transport in eukaryotes: the role of DMT1. Neurotoxicology. 2008;29(4):569–76. doi:10.1016/j.neuro.2008.04.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Au C, Benedetto A, Anderson J, Labrousse A, Erikson K, Ewbank JJ, Aschner Mn.d.. SMF-1, SMF-2 and SMF-3 DMT1 orthologues regulate and are regulated differentially by manganese levels in C. elegans. PloS one. 2009;4(11):e7792. doi:10.1371/journal.pone.0007792.

  • Avery L, Horvitz HR. Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans. Neuron. 1989;3(4):473–85.

    Article  CAS  PubMed  Google Scholar 

  • Bargmann CI, Thomas JH, Horvitz HR. Chemosensory cell function in the behavior and development of Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol. 1990;55:529–38.

    Article  CAS  PubMed  Google Scholar 

  • Bartzokis G, Beckson M, Hance DB, Marx P, Foster JA, Marder SR. MR evaluation of age-related increase of brain iron in young adult and older normal males. Magn Reson Imaging. 1997;15(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  • Basha MR, Wei W, Bakheet SA, Benitez N, Siddiqi HK, Ge YW, Lahiri DK, Zawia NH. The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. J Neurosci. 2005;25(4):823–9. doi:10.1523/JNEUROSCI.4335-04.2005.

    Article  CAS  PubMed  Google Scholar 

  • Benedetto A, Au C, Aschner M. Manganese-induced dopaminergic neurodegeneration: insights into mechanisms and genetics shared with Parkinson’s disease. Chem Rev. 2009;109(10):4862–84. doi:10.1021/cr800536y.

    Article  CAS  PubMed  Google Scholar 

  • Benedetto A, Au C, Avila DS, Milatovic D, Aschner M. Extracellular dopamine potentiates mn-induced oxidative stress, lifespan reduction, and dopaminergic neurodegeneration in a BLI-3-dependent manner in Caenorhabditis elegans. PLoS Genet. 2010;6(8) doi:10.1371/journal.pgen.1001084.

  • Berg D, Youdim MB. Role of iron in neurodegenerative disorders. Top Magn Resonan Imag TMRI. 2006;17(1):5–17. doi:10.1097/01.rmr.0000245461.90406.ad.

    Article  Google Scholar 

  • Bharathi VP, Govindaraju M, Palanisamy AP, Sambamurti K, Rao KS. Molecular toxicity of aluminium in relation to neurodegeneration. Indian J Med Res. 2008;128(4):545–56.

    CAS  Google Scholar 

  • Bishak YK, Payahoo L, Osatdrahimi A, Nourazarian A. Mechanisms of cadmium carcinogenicity in the gastrointestinal tract. Asian Pac J Cancer Prev. 2015;16(1):9–21.

    Article  PubMed  Google Scholar 

  • Boelmans K, Holst B, Hackius M, Finsterbusch J, Gerloff C, Fiehler J, Munchau A. Brain iron deposition fingerprints in Parkinson’s disease and progressive supranuclear palsy. Mov Disord. 2012;27(3):421–7. doi:10.1002/mds.24926.

    Article  PubMed  Google Scholar 

  • Bofill R, Orihuela R, Romagosa M, Domenech J, Atrian S, Capdevila M. Caenorhabditis elegans Metallothionein isoform specificity--metal binding abilities and the role of histidine in CeMT1 and CeMT2. FEBS J. 2009;276(23):7040–56. doi:10.1111/j.1742-4658.2009.07417.x.

    Article  CAS  PubMed  Google Scholar 

  • Bonifati V. Genetics of Parkinson’s disease. Minerva Med. 2005;96(3):175–86.

    CAS  PubMed  Google Scholar 

  • Bornhorst J, Chakraborty S, Meyer S, Lohren H, Brinkhaus SG, Knight AL, Caldwell KA, Caldwell GA, Karst U, Schwerdtle T, Bowman A, Aschner M. The effects of pdr1, djr1.1 and pink1 loss in manganese-induced toxicity and the role of alpha-synuclein in C. elegans. Metallom Integr Biometal Sci. 2014;6(3):476–90. doi:10.1039/c3mt00325f.

    Article  CAS  Google Scholar 

  • Bourgeois F, Ben-Yakar A. Femtosecond laser nanoaxotomy properties and their effect on axonal recovery in C. elegans. Opt Express. 2007;15(14):8521–31.

    Article  PubMed  Google Scholar 

  • Bowman AB, Kwakye GF, Herrero Hernandez E, Aschner M. Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol. 2011;25(4):191–203. doi:10.1016/j.jtemb.2011.08.144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd WA, Smith MV, Kissling GE, Freedman JH. Medium- and high-throughput screening of neurotoxicants using C. elegans. Neurotoxicol Teratol. 2010;32(1):68–73. doi:10.1016/j.ntt.2008.12.004.

    Article  CAS  PubMed  Google Scholar 

  • Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77(1):71–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brinkhaus SG, Bornhorst J, Chakraborty S, Wehe CA, Niehaus R, Reifschneider O, Aschner M, Karst U. Elemental bioimaging of manganese uptake in C. elegans. Metallom Integr Biometal Sci. 2014;6(3):617–21. doi:10.1039/c3mt00334e.

    Article  CAS  Google Scholar 

  • Bush AI. Metals and neuroscience. Curr Opin Chem Biol. 2000;4(2):184–91.

    Article  CAS  PubMed  Google Scholar 

  • Campbell A. n.d. The potential role of aluminium in Alzheimer’s disease. Nephrol Dial Transplant. (2002;17(Suppl 2):17–20.

    Google Scholar 

  • Cerpa WF, Barria MI, Chacon MA, Suazo M, Gonzalez M, Opazo C, Bush AI, Inestrosa NC. The N-terminal copper-binding domain of the amyloid precursor protein protects against Cu2+ neurotoxicity in vivo. FASEB J. 2004;18(14):1701–3. doi:10.1096/fj.03-1349fje.

    CAS  PubMed  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression. Science. 1994;263(5148):802–5.

    Article  CAS  PubMed  Google Scholar 

  • Chege PM, McColl G. Caenorhabditis elegans: a model to investigate oxidative stress and metal dyshomeostasis in Parkinson’s disease. Front Aging Neurosci. 2014;6:89. doi:10.3389/fnagi.2014.00089.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen BL, Hall DH, Chklovskii DB. Wiring optimization can relate neuronal structure and function. Proc Natl Acad Sci U S A. 2006;103(12):4723–8. doi:10.1073/pnas.0506806103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen P, Martinez-Finley EJ, Bornhorst J, Chakraborty S, Aschner Mn.d.-a. Metal-induced neurodegeneration in C. elegans. Front Aging Neurosci. 2013;5:18. doi:10.3389/fnagi.2013.00018.

  • Chen P, DeWitt MR, Bornhorst J, Soares FA, Mukhopadhyay S, Bowman AB, Aschner M. Age- and manganese-dependent modulation of dopaminergic phenotypes in a C. elegans DJ-1 genetic model of Parkinson’s disease. Metallom Integr Biometal Sci. 2015;7(2):289–98. doi:10.1039/c4mt00292j.

    Article  CAS  Google Scholar 

  • Chen P, Miah MR, Aschner M. n.d.-b Metals and Neurodegeneration. F1000Research 5. 2016. doi:10.12688/f1000research.7431.1

  • Contreras EQ, Puppala HL, Escalera G, Zhong W, Colvin VL. Size-dependent impacts of silver nanoparticles on the lifespan, fertility, growth, and locomotion of Caenorhabditis elegans. Environ Toxicol Chem. 2014;33(12):2716–23. doi:10.1002/etc.2705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Y, McBride SJ, Boyd WA, Alper S, Freedman JH. Toxicogenomic analysis of Caenorhabditis elegans reveals novel genes and pathways involved in the resistance to cadmium toxicity. Genome Biol. 2007;8(6):R122. doi:10.1186/gb-2007-8-6-r122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dahms SO, Konnig I, Roeser D, Guhrs KH, Mayer MC, Kaden D, Multhaup G, Than ME. Metal binding dictates conformation and function of the amyloid precursor protein (APP) E2 domain. J Mol Biol. 2012;416(3):438–52. doi:10.1016/j.jmb.2011.12.057.

    Article  CAS  PubMed  Google Scholar 

  • De Marco EV, Annesi G, Tarantino P, Nicoletti G, Civitelli D, Messina D, Annesi F, Arabia G, Salsone M, Condino F, Novellino F, Provenzano G, Rocca FE, Colica C, Morelli M, Scornaienchi V, Greco V, Giofre L, Quattrone A. DJ-1 is a Parkinson’s disease susceptibility gene in southern Italy. Clin Genet. 2010;77(2):183–8. doi:10.1111/j.1399-0004.2009.01310.x.

    Article  PubMed  CAS  Google Scholar 

  • Debes F, Budtz-Jorgensen E, Weihe P, White RF, Grandjean P. Impact of prenatal methylmercury exposure on neurobehavioral function at age 14 years. Neurotoxicol Teratol. 2006;28(5):536–47. doi:10.1016/j.ntt.2006.02.005.

    Article  CAS  PubMed  Google Scholar 

  • Dhawan R, Dusenbery DB, Williams PL. Comparison of lethality, reproduction, and behavior as toxicological endpoints in the nematode Caenorhabditis elegans. J Toxicol Environ Health A. 1999;58(7):451–62.

    Article  CAS  PubMed  Google Scholar 

  • Dietrich N, Tan CH, Cubillas C, Earley BJ, Kornfeld K. Insights into zinc and cadmium biology in the nematode Caenorhabditis elegans. Arch Biochem Biophys. 2016; doi:10.1016/j.abb.2016.05.021.

  • Dinocourt C, Legrand M, Dublineau I, Lestaevel P. The neurotoxicology of uranium. Toxicology. 2015;337:58–71. doi:10.1016/j.tox.2015.08.004.

    Article  CAS  PubMed  Google Scholar 

  • Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72. doi:10.1016/j.cell.2012.03.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobson AW, Lack AK, Erikson KM, Aschner M. Depleted uranium is not toxic to rat brain endothelial (RBE4) cells. Biol Trace Elem Res. 2006;110(1):61–72. doi:10.1385/BTER:110:1:61.

    Article  CAS  PubMed  Google Scholar 

  • Domingo JL. Aluminum and other metals in Alzheimer’s disease: a review of potential therapy with chelating agents. J Alzheimer’s Dis JAD. 2006;10(2–3):331–41.

    Article  PubMed  Google Scholar 

  • Du M, Wang D. The neurotoxic effects of heavy metal exposure on GABAergic nervous system in nematode Caenorhabditis elegans. Environ Toxicol Pharmacol. 2009;27(3):314–20. doi:10.1016/j.etap.2008.11.011.

    Article  CAS  PubMed  Google Scholar 

  • Duce JA, Bush AI. Biological metals and Alzheimer’s disease: implications for therapeutics and diagnostics. Prog Neurobiol. 2010;92(1):1–18. doi:10.1016/j.pneurobio.2010.04.003.

    Article  CAS  PubMed  Google Scholar 

  • Duce JA, Tsatsanis A, Cater MA, James SA, Robb E, Wikhe K, Leong SL, Perez K, Johanssen T, Greenough MA, Cho HH, Galatis D, Moir RD, Masters CL, McLean C, Tanzi RE, Cappai R, Barnham KJ, Ciccotosto GD, Rogers JT, Bush AI. Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell. 2010;142(6):857–67. doi:10.1016/j.cell.2010.08.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dusek P, Jankovic J, Le W. Iron dysregulation in movement disorders. Neurobiol Dis. 2012;46(1):1–18. doi:10.1016/j.nbd.2011.12.054.

    Article  CAS  PubMed  Google Scholar 

  • Dutilleul M, Lemaire L, Reale D, Lecomte C, Galas S, Bonzom JM. Rapid phenotypic changes in Caenorhabditis elegans under uranium exposure. Ecotoxicology. 2013;22(5):862–8. doi:10.1007/s10646-013-1090-9.

    Article  CAS  PubMed  Google Scholar 

  • EFSA. Cadmium in food. EFSA J. 2009;53:1–139.

    Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol. 2005;3:6. doi:10.1186/1477-3155-3-6.

    Article  Google Scholar 

  • Erikson KM, John CE, Jones SR, Aschner M. Manganese accumulation in striatum of mice exposed to toxic doses is dependent upon a functional dopamine transporter. Environ Toxicol Pharmacol. 2005;20(3):390–4. doi:10.1016/j.etap.2005.03.009.

    Article  CAS  PubMed  Google Scholar 

  • Esposito G, Amoroso MR, Bergamasco C, Di Schiavi E, Bazzicalupo P. The G protein regulators EGL-10 and EAT-16, the Gialpha GOA-1 and the G(q)alpha EGL-30 modulate the response of the C. elegans ASH polymodal nociceptive sensory neurons to repellents. BMC Biol. 2010;8:138. doi:10.1186/1741-7007-8-138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eto K, Marumoto M, Takeya M. The pathology of methylmercury poisoning (Minamata disease): the 50th anniversary of Japanese Society of Neuropathology. Neuropathology. 2010;30(5):471–9. doi:10.1111/j.1440-1789.2010.01119.x.

    PubMed  Google Scholar 

  • Exley C. Aluminium and iron, but neither copper nor zinc, are key to the precipitation of beta-sheets of Abeta_{42} in senile plaque cores in Alzheimer’s disease. J Alzheimer’s Dis JAD. 2006;10(2–3):173–7.

    Article  PubMed  Google Scholar 

  • Fagundez DA, Camara DF, Salgueiro WG, Noremberg S, Luiz Puntel R, Piccoli JE, Garcia SC, da Rocha JBT, Aschner M, Avila DS. Behavioral and dopaminergic damage induced by acute iron toxicity in Caenorhabditis elegans. Toxicol Res. 2015;4(4):878–84. doi:10.1039/C4TX00120F.

    Article  CAS  Google Scholar 

  • Farina M, Avila DS, da Rocha JB, Aschner M. Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int. 2013;62(5):575–94. doi:10.1016/j.neuint.2012.12.006.

    Article  CAS  PubMed  Google Scholar 

  • Fitsanakis VA, Erikson KM, Garcia SJ, Evje L, Syversen T, Aschner M. Brain accumulation of depleted uranium in rats following 3- or 6-month treatment with implanted depleted uranium pellets. Biol Trace Elem Res. 2006;111(1–3):185–97. doi:10.1385/BTER:111:1:185.

    Article  CAS  PubMed  Google Scholar 

  • Fraga CG, Oteiza PI. Iron toxicity and antioxidant nutrients. Toxicology. 2002;180(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  • Friedman A, Galazka-Friedman J, Koziorowski D. Iron as a cause of Parkinson disease - a myth or a well established hypothesis? Parkinsonism Relat Disord. 2009;15(Suppl 3):S212–4. doi:10.1016/S1353-8020(09)70817-X.

    Article  PubMed  Google Scholar 

  • Gaeta A, Hider RC. The crucial role of metal ions in neurodegeneration: the basis for a promising therapeutic strategy. Br J Pharmacol. 2005;146(8):1041–59. doi:10.1038/sj.bjp.0706416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Hunt CP, Leung MC, Bodhicharla RK, McKeever MG, Arrant AE, Margillo KM, Ryde IT, Cyr DD, Kosmaczewski SG, Hammarlund M, Meyer JN. Exposure to mitochondrial genotoxins and dopaminergic neurodegeneration in Caenorhabditis elegans. PLoS One. 2014;9(12):e114459. doi:10.1371/journal.pone.0114459.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gotz W. History of treatment of Parkinson disease. Pharm Unserer Zeit. 2006;35(3):190–7.

    Article  PubMed  Google Scholar 

  • Grimaud J, Millar J, Thorpe JW, Moseley IF, McDonald WI, Miller DH. Signal intensity on MRI of basal ganglia in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1995;59(3):306–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo M, Wu TH, Song YX, Ge MH, Su CM, Niu WP, Li LL, Xu ZJ, Ge CL, Al-Mhanawi MT, Wu SP, Wu ZX. Reciprocal inhibition between sensory ASH and ASI neurons modulates nociception and avoidance in Caenorhabditis elegans. Nat Commun. 2015;6:5655. doi:10.1038/ncomms6655.

    Article  CAS  PubMed  Google Scholar 

  • Gupta VB, Anitha S, Hegde ML, Zecca L, Garruto RM, Ravid R, Shankar SK, Stein R, Shanmugavelu P, Jagannatha Rao KS. Aluminium in Alzheimer’s disease: are we still at a crossroad? Cellul Mol Life Sci CMLS. 2005;62(2):143–58. doi:10.1007/s00018-004-4317-3.

    Article  CAS  Google Scholar 

  • Helmcke KJ, Aschner M. Hormetic effect of methylmercury on Caenorhabditis elegans. Toxicol Appl Pharmacol. 2010;248(2):156–64. doi:10.1016/j.taap.2010.07.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helmcke KJ, Syversen T, Miller DM 3rd, Aschner M. Characterization of the effects of methylmercury on Caenorhabditis elegans. Toxicol Appl Pharmacol. 2009;240(2):265–72. doi:10.1016/j.taap.2009.03.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilliard MA, Bargmann CI, Bazzicalupo P. C. elegans Responds to chemical repellents by integrating sensory inputs from the head and the tail. Current biology : CB. 2002;12(9):730–4.

    Article  CAS  PubMed  Google Scholar 

  • Hoss S, Schlottmann K, Traunspurger W. Toxicity of ingested cadmium to the nematode Caenorhabditis elegans. Environ Sci Technol. 2011;45(23):10219–25. doi:10.1021/es2027136.

    Article  CAS  PubMed  Google Scholar 

  • Hossain S, Liu HN, Nguyen M, Shore G, Almazan G. Cadmium exposure induces mitochondria-dependent apoptosis in oligodendrocytes. Neurotoxicology. 2009;30(4):544–54. doi:10.1016/j.neuro.2009.06.001.

    Article  CAS  PubMed  Google Scholar 

  • Houpert P, Lestaevel P, Bussy C, Paquet F, Gourmelon P. Enriched but not depleted uranium affects central nervous system in long-term exposed rat. Neurotoxicology. 2005;26(6):1015–20. doi:10.1016/j.neuro.2005.05.005.

    Article  CAS  PubMed  Google Scholar 

  • Hu YO, Wang Y, Ye BP, Wang DY. Phenotypic and behavioral defects induced by iron exposure can be transferred to progeny in Caenorhabditis elegans. Biomedical Environ Sci BES. 2008;21(6):467–73. doi:10.1016/S0895-3988(09)60004-0.

    Article  CAS  Google Scholar 

  • IARC. n.d. Cadmium and certain cadmium compounds in IARC monographs on the EValuation the carcinogenic risk of chemicals to humans. Beryllium cadmium, mercury and exposures in the glass manufacturing industry, vol 58. World Health Organization, Lyon. 1993.

    Google Scholar 

  • Ijomone OM, Miah MR, Peres TV, Nwoha PU, Aschner M. Null allele mutants of trt-1, the catalytic subunit of telomerase in Caenorhabditis elegans, are less sensitive to Mn-induced toxicity and DAergic degeneration. Neurotoxicology. 2016;57:54–60. doi:10.1016/j.neuro.2016.08.016.

    Article  CAS  PubMed  Google Scholar 

  • Jiang GC, Tidwell K, McLaughlin BA, Cai J, Gupta RC, Milatovic D, Nass R, Aschner M. Neurotoxic potential of depleted uranium effects in primary cortical neuron cultures and in Caenorhabditis elegans. Toxicol Sci. 2007a;99(2):553–65. doi:10.1093/toxsci/kfm171.

    Article  CAS  PubMed  Google Scholar 

  • Jiang LF, Yao TM, Zhu ZL, Wang C, Ji LN. Impacts of cd(II) on the conformation and self-aggregation of Alzheimer’s tau fragment corresponding to the third repeat of microtubule-binding domain. Biochim Biophys Acta. 2007b;1774(11):1414–21. doi:10.1016/j.bbapap.2007.08.014.

    Article  CAS  PubMed  Google Scholar 

  • Jiang GC, Hughes S, Sturzenbaum SR, Evje L, Syversen T, Aschner M. Caenorhabditis elegans Metallothioneins protect against toxicity induced by depleted uranium. Toxicol Sci. 2009;111(2):345–54. doi:10.1093/toxsci/kfp161.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Chen J, Wu Y, Wang Q, Li H. Sublethal toxicity endpoints of heavy metals to the nematode Caenorhabditis elegans. PLoS One. 2016;11(1):e0148014. doi:10.1371/journal.pone.0148014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jorgensen EM. n.d. Gaba. WormBook : the online review of C elegans biology. 2005;1–13. doi:10.1895/wormbook.1.14.1.

  • Jung SK, Qu X, Aleman-Meza B, Wang T, Riepe C, Liu Z, Li Q, Zhong W. Multi-endpoint, high-throughput study of nanomaterial toxicity in Caenorhabditis elegans. Environ Sci Technol. 2015;49(4):2477–85. doi:10.1021/es5056462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khare P, Sonane M, Pandey R, Ali S, Gupta KC, Satish A. Adverse effects of TiO2 and ZnO nanoparticles in soil nematode, Caenorhabditis elegans. J Biomed Nanotechnol. 2011;7(1):116–7.

    Article  CAS  PubMed  Google Scholar 

  • Khare P, Sonane M, Nagar Y, Moin N, Ali S, Gupta KC, Satish A. Size dependent toxicity of zinc oxide nano-particles in soil nematode Caenorhabditis elegans. Nanotoxicology. 2015;9(4):423–32. doi:10.3109/17435390.2014.940403.

    Article  CAS  PubMed  Google Scholar 

  • Kim SO, Merchant K, Nudelman R, Beyer WF Jr, Keng T, DeAngelo J, Hausladen A, Stamler JS. OxyR: a molecular code for redox-related signaling. Cell. 2002;109(3):383–96.

    Article  CAS  PubMed  Google Scholar 

  • Kim DK, Park JD, Choi BS. Mercury-induced amyloid-beta (Abeta) accumulation in the brain is mediated by disruption of Abeta transport. J Toxicol Sci. 2014;39(4):625–35.

    Article  CAS  PubMed  Google Scholar 

  • Klang IM, Schilling B, Sorensen DJ, Sahu AK, Kapahi P, Andersen JK, Swoboda P, Killilea DW, Gibson BW, Lithgow GJ. n.d. Iron promotes protein insolubility and aging in C. elegans. Aging. 2014;6(11):975–91. doi:10.18632/aging.100689.

  • Levenson CW. Trace metal regulation of neuronal apoptosis: from genes to behavior. Physiol Behav. 2005;86(3):399–406. doi:10.1016/j.physbeh.2005.08.010.

    Article  CAS  PubMed  Google Scholar 

  • Lewinska-Preis L, Jablonska M, Fabianska MJ, Kita A. Bioelements and mineral matter in human livers from the highly industrialized region of the upper Silesia Coal Basin (Poland). Environ Geochem Health. 2011;33(6):595–611. doi:10.1007/s10653-011-9373-7.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yu S, Wu Q, Tang M, Pu Y, Wang D. Chronic Al2O3-nanoparticle exposure causes neurotoxic effects on locomotion behaviors by inducing severe ROS production and disruption of ROS defense mechanisms in nematode Caenorhabditis elegans. J Hazard Mater. 2012;219-220:221–30. doi:10.1016/j.jhazmat.2012.03.083.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yu S, Wu Q, Tang M, Wang D. Transmissions of serotonin, dopamine, and glutamate are required for the formation of neurotoxicity from Al2O3-NPs in nematode Caenorhabditis elegans. Nanotoxicology. 2013;7(5):1004–13. doi:10.3109/17435390.2012.689884.

    Article  CAS  PubMed  Google Scholar 

  • Lidsky TI, Schneider JS. Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain J Neurol. 2003;126(Pt 1):5–19.

    Article  Google Scholar 

  • Lin YT, Hoang H, Hsieh SI, Rangel N, Foster AL, Sampayo JN, Lithgow GJ, Srinivasan C. Manganous ion supplementation accelerates wild type development, enhances stress resistance, and rescues the life span of a short-lived Caenorhabditis elegans mutant. Free Radic Biol Med. 2006;40(7):1185–93. doi:10.1016/j.freeradbiomed.2005.11.007.

    Article  CAS  PubMed  Google Scholar 

  • Lints R, Emmons SW. Patterning of dopaminergic neurotransmitter identity among Caenorhabditis elegans ray sensory neurons by a TGFbeta family signaling pathway and a Hox gene. Development. 1999;126(24):5819–31.

    CAS  PubMed  Google Scholar 

  • Lopez E, Arce C, Oset-Gasque MJ, Canadas S, Gonzalez MP. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radic Biol Med. 2006;40(6):940–51. doi:10.1016/j.freeradbiomed.2005.10.062.

    Article  CAS  PubMed  Google Scholar 

  • Lubick N. Mercury alters immune system response in artisanal gold miners. Environ Health Perspect. 2010;118(6):A243. doi:10.1289/ehp.118-a243.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lukawski K, Nieradko B, Sieklucka-Dziuba M. Effects of cadmium on memory processes in mice exposed to transient cerebral oligemia. Neurotoxicol Teratol. 2005;27(4):575–84. doi:10.1016/j.ntt.2005.05.009.

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Zhang J, Liu N, Luo Y, Zhao B. Copper ions influence the toxicity of beta-amyloid(1-42) in a concentration-dependent manner in a Caenorhabditis elegans model of Alzheimer’s disease. Sci China Life Sci. 2011;54(6):527–34. doi:10.1007/s11427-011-4180-z.

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Bertsch PM, Glenn TC, Kabengi NJ, Williams PL. Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ Toxicol Chem. 2009;28(6):1324–30. doi:10.1897/08-262.1.

    Article  CAS  PubMed  Google Scholar 

  • Marchetti C. Molecular targets of lead in brain neurotoxicity. Neurotox Res. 2003;5(3):221–36.

    Article  PubMed  Google Scholar 

  • Martinez-Finley EJ, Avila DS, Chakraborty S, Aschner M. Insights from Caenorhabditis elegans on the role of metals in neurodegenerative diseases. Metallom Integr Biometal Sci. 2011;3(3):271–9. doi:10.1039/c0mt00064g.

    Article  CAS  Google Scholar 

  • Martinez-Finley EJ, Chakraborty S, Slaughter JC, Aschner M. Early-life exposure to methylmercury in wildtype and pdr-1/parkin knockout C. elegans. Neurochem Res. 2013;38(8):1543–52. doi:10.1007/s11064-013-1054-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDiarmid MA, Engelhardt SM, Dorsey CD, Oliver M, Gucer P, Wilson PD, Kane R, Cernich A, Kaup B, Anderson L, Hoover D, Brown L, Albertini R, Gudi R, Squibb KS. Surveillance results of depleted uranium-exposed gulf war I veterans: sixteen years of follow-up. J Toxicol Environ Health A. 2009;72(1):14–29. doi:10.1080/15287390802445400.

    Article  CAS  PubMed  Google Scholar 

  • McElwee MK, Freedman JH. Comparative toxicology of mercurials in Caenorhabditis elegans. Environ Toxicol Chem. 2011;30(9):2135–41. doi:10.1002/etc.603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McElwee MK, Ho LA, Chou JW, Smith MV, Freedman JH. Comparative toxicogenomic responses of mercuric and methyl-mercury. BMC Genomics. 2013;14:698. doi:10.1186/1471-2164-14-698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minniti AN, Rebolledo DL, Grez PM, Fadic R, Aldunate R, Volitakis I, Cherny RA, Opazo C, Masters C, Bush AI, Inestrosa NC. Intracellular amyloid formation in muscle cells of Abeta-transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification. Mol Neurodegener. 2009;4:2. doi:10.1186/1750-1326-4-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mizoroki T, Meshitsuka S, Maeda S, Murayama M, Sahara N, Takashima A. Aluminum induces tau aggregation in vitro but not in vivo. J Alzheimer’s Dis JAD. 2007;11(4):419–27.

    Article  CAS  PubMed  Google Scholar 

  • Multhaup G, Schlicksupp A, Hesse L, Beher D, Ruppert T, Masters CL, Beyreuther K. The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(II) to copper(I). Science. 1996;271(5254):1406–9.

    Article  CAS  PubMed  Google Scholar 

  • Neghab M, Norouzi MA, Choobineh A, Kardaniyan MR, Zadeh JH. Health effects associated with long-term occupational exposure of employees of a chlor-alkali plant to mercury. Int J Occup Saf Ergonom JOSE. 2012;18(1):97–106. doi:10.1080/10803548.2012.11076920.

    Article  CAS  Google Scholar 

  • Norfray JF, Chiaradonna NL, Heiser WJ, Song SH, Manyam BV, Devleschoward AB, Eastwood LM. Brain iron in patients with Parkinson disease: MR visualization using gradient modification. AJNR Am J Neuroradiol. 1988;9(2):237–40.

    CAS  PubMed  Google Scholar 

  • Okuda B, Iwamoto Y, Tachibana H, Sugita M. Parkinsonism after acute cadmium poisoning. Clin Neurol Neurosurg. 1997;99(4):263–5.

    Article  CAS  PubMed  Google Scholar 

  • Oteiza PI, Mackenzie GG, Verstraeten SV. Metals in neurodegeneration: involvement of oxidants and oxidant-sensitive transcription factors. Mol Asp Med. 2004;25(1–2):103–15. doi:10.1016/j.mam.2004.02.012.

    Article  CAS  Google Scholar 

  • Page KE, White KN, McCrohan CR, Killilea DW, Lithgow GJ. Aluminium exposure disrupts elemental homeostasis in Caenorhabditis elegans. Metallom Integr Biometal Sci. 2012;4(5):512–22. doi:10.1039/c2mt00146b.

    Article  CAS  Google Scholar 

  • Pamphlett R, Kum Jew S. Uptake of inorganic mercury by human locus ceruleus and corticomotor neurons: implications for amyotrophic lateral sclerosis. Acta Neuropathol Commun. 2013;1:13. doi:10.1186/2051-5960-1-13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parmalee NL, Maqbool SB, Ye B, Calder B, Bowman AB, Aschner M. n.d. RNASeq in C. elegans following manganese exposure. Curr Protocols Toxicol. 2015;65:11 20 11–17. doi:10.1002/0471140856.tx1120s65.

  • Petroni D, Tsai J, Agrawal K, Mondal D, George W. Low-dose methylmercury-induced oxidative stress, cytotoxicity, and tau-hyperphosphorylation in human neuroblastoma (SH-SY5Y) cells. Environ Toxicol. 2012;27(9):549–55. doi:10.1002/tox.20672.

    Article  CAS  PubMed  Google Scholar 

  • Pfefferbaum A, Adalsteinsson E, Rohlfing T, Sullivan EV. MRI estimates of brain iron concentration in normal aging: comparison of field-dependent (FDRI) and phase (SWI) methods. NeuroImage. 2009;47(2):493–500. doi:10.1016/j.neuroimage.2009.05.006.

    Article  PubMed  PubMed Central  Google Scholar 

  • Poujois A, Devedjian JC, Moreau C, Devos D, Chaine P, Woimant F, Duce JA. Bioavailable trace metals in neurological diseases. Curr Treat Options Neurol. 2016;18(10):46. doi:10.1007/s11940-016-0426-1.

    Article  PubMed  Google Scholar 

  • Price DL. New order from neurological disorders. Nature. 1999;399(6738 Suppl):A3–5.

    Article  CAS  PubMed  Google Scholar 

  • Rand JB. Acetylcholine. WormBook. 2007:1–21. doi:10.1895/wormbook.1.131.1.

  • Rigon AP, Cordova FM, Oliveira CS, Posser T, Costa AP, Silva IG, Santos DA, Rossi FM, Rocha JB, Leal RB. Neurotoxicity of cadmium on immature hippocampus and a neuroprotective role for p38 MAPK. Neurotoxicology. 2008;29(4):727–34. doi:10.1016/j.neuro.2008.04.017.

    Article  CAS  PubMed  Google Scholar 

  • Roh JY, Lee J, Choi J. Assessment of stress-related gene expression in the heavy metal-exposed nematode Caenorhabditis elegans: a potential biomarker for metal-induced toxicity monitoring and environmental risk assessment. Environ Toxicol Chem. 2006;25(11):2946–56.

    Article  CAS  PubMed  Google Scholar 

  • Rosas HD, Chen YI, Doros G, Salat DH, Chen NK, Kwong KK, Bush A, Fox J, Hersch SM. Alterations in brain transition metals in Huntington disease: an evolving and intricate story. Arch Neurol. 2012;69(7):887–93. doi:10.1001/archneurol.2011.2945.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudgalvyte M, Peltonen J, Lakso M, Nass R, Wong G. RNA-Seq reveals acute manganese exposure increases endoplasmic reticulum related and Lipocalin mRNAs in Caenorhabditis elegans. J Biochem Mol Toxicol. 2016;30(2):97–105. doi:10.1002/jbt.21768.

    Article  CAS  PubMed  Google Scholar 

  • Rui Q, Zhao Y, Wu Q, Tang M, Wang D. Biosafety assessment of titanium dioxide nanoparticles in acutely exposed nematode Caenorhabditis elegans with mutations of genes required for oxidative stress or stress response. Chemosphere. 2013;93(10):2289–96. doi:10.1016/j.chemosphere.2013.08.007.

    Article  CAS  PubMed  Google Scholar 

  • Sadiq S, Ghazala Z, Chowdhury A, Busselberg D. Metal toxicity at the synapse: presynaptic, postsynaptic, and long-term effects. J Toxicol. 2012;2012:132671. doi:10.1155/2012/132671.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salazar J, Mena N, Hunot S, Prigent A, Alvarez-Fischer D, Arredondo M, Duyckaerts C, Sazdovitch V, Zhao L, Garrick LM, Nunez MT, Garrick MD, Raisman-Vozari R, Hirsch EC. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci U S A. 2008;105(47):18578–83. doi:10.1073/pnas.0804373105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambongi Y, Nagae T, Liu Y, Yoshimizu T, Takeda K, Wada Y, Futai M. Sensing of cadmium and copper ions by externally exposed ADL, ASE, and ASH neurons elicits avoidance response in Caenorhabditis elegans. Neuroreport. 1999;10(4):753–7.

    Article  CAS  PubMed  Google Scholar 

  • Sanfeliu C, Sebastia J, Cristofol R, Rodriguez-Farre E. Neurotoxicity of organomercurial compounds. Neurotox Res. 2003;5(4):283–305.

    Article  PubMed  Google Scholar 

  • Santner A, Uversky VN. Metalloproteomics and metal toxicology of alpha-synuclein. Metall Integr Biometal Sci. 2010;2(6):378–92. doi:10.1039/b926659c.

    Article  CAS  Google Scholar 

  • Sawin ER, Ranganathan R, Horvitz HR. C. elegans Locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron. 2000;26(3):619–31.

    Article  CAS  PubMed  Google Scholar 

  • Scheiber IF, Mercer JF, Dringen R. Metabolism and functions of copper in brain. Prog Neurobiol. 2014;116:33–57. doi:10.1016/j.pneurobio.2014.01.002.

    Article  CAS  PubMed  Google Scholar 

  • Schipper HM. Neurodegeneration with brain iron accumulation - clinical syndromes and neuroimaging. Biochim Biophys Acta. 2012;1822(3):350–60. doi:10.1016/j.bbadis.2011.06.016.

    Article  CAS  PubMed  Google Scholar 

  • Settivari R, Levora J, Nass R. The divalent metal transporter homologues SMF-1/2 mediate dopamine neuron sensitivity in caenorhabditis elegans models of manganism and parkinson disease. J Biol Chem. 2009;284(51):35758–68. doi:10.1074/jbc.M109.051409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sistrunk SC, Ross MK, Filipov NM. Direct effects of manganese compounds on dopamine and its metabolite Dopac: an in vitro study. Environ Toxicol Pharmacol. 2007;23(3):286–96. doi:10.1016/j.etap.2006.11.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subbiah R, Veerapandian M, Yun KS. Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr Med Chem. 2010;17(36):4559–77.

    Article  CAS  PubMed  Google Scholar 

  • Sulston JE. Neuronal cell lineages in the nematode Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):443–52.

    Article  PubMed  Google Scholar 

  • Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983;100(1):64–119.

    Article  CAS  PubMed  Google Scholar 

  • Swain SC, Keusekotten K, Baumeister R, Sturzenbaum SR. C. elegans Metallothioneins: new insights into the phenotypic effects of cadmium toxicosis. J Mol Biol. 2004;341(4):951–9. doi:10.1016/j.jmb.2004.06.050.

    Article  CAS  PubMed  Google Scholar 

  • Takeda A. Manganese action in brain function. Brain Res Brain Res Rev. 2003;41(1):79–87.

    Article  CAS  PubMed  Google Scholar 

  • Tamm C, Duckworth JK, Hermanson O, Ceccatelli S. Methylmercury inhibits differentiation of rat neural stem cells via Notch signalling. Neuroreport. 2008;19(3):339–43. doi:10.1097/WNR.0b013e3282f50ca4.

    Article  CAS  PubMed  Google Scholar 

  • Thanh NTK, Green LAW. Functionalisation of nanoparticles for biomedical applications. Nano Today. 2010;5:213–30. doi:10.1016/j.nantod.2010.05.003.

    Article  CAS  Google Scholar 

  • Tiernan CT, Edwin EA, Hawong HY, Rios-Cabanillas M, Goudreau JL, Atchison WD, Lookingland KJ. Methylmercury impairs canonical dopamine metabolism in rat undifferentiated pheochromocytoma (PC12) cells by indirect inhibition of aldehyde dehydrogenase. Toxicological sciences : an official journal of the Society of Toxicology. 2015;144(2):347–56. doi:10.1093/toxsci/kfv001.

    Article  CAS  Google Scholar 

  • Valentini S, Cabreiro F, Ackerman D, Alam MM, Kunze MB, Kay CW, Gems D. Manipulation of in vivo iron levels can alter resistance to oxidative stress without affecting ageing in the nematode C. elegans. Mech Ageing Dev. 2012;133(5):282–90. doi:10.1016/j.mad.2012.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanduyn N, Settivari R, Wong G, Nass R. SKN-1/Nrf2 inhibits dopamine neuron degeneration in a Caenorhabditis elegans model of methylmercury toxicity. Toxicol Sci. 2010;118(2):613–24. doi:10.1093/toxsci/kfq285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanduyn N, Settivari R, Levora J, Zhou S, Unrine J, Nass R. The metal transporter SMF-3/DMT-1 mediates aluminum-induced dopamine neuron degeneration. J Neurochem. 2013;124(1):147–57. doi:10.1111/jnc.12072.

    Article  CAS  PubMed  Google Scholar 

  • Vatamaniuk OK, Bucher EA, Ward JT, Rea PA. A new pathway for heavy metal detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans. J Biol Chem. 2001;276(24):20817–20. doi:10.1074/jbc.C100152200.

    Article  CAS  PubMed  Google Scholar 

  • Verstraeten SV, Aimo L, Oteiza PI. Aluminium and lead: molecular mechanisms of brain toxicity. Arch Toxicol. 2008;82(11):789–802. doi:10.1007/s00204-008-0345-3.

    Article  CAS  PubMed  Google Scholar 

  • Villeda-Hernandez J, Barroso-Moguel R, Mendez-Armenta M, Nava-Ruiz C, Huerta-Romero R, Rios C. Enhanced brain regional lipid peroxidation in developing rats exposed to low level lead acetate. Brain Res Bull. 2001;55(2):247–51.

    Article  CAS  PubMed  Google Scholar 

  • Waalkes MP. Cadmium carcinogenesis in review. J Inorg Biochem. 2000;79(1–4):241–4.

    Article  CAS  PubMed  Google Scholar 

  • Walton JR. Aluminum involvement in the progression of Alzheimer’s disease. J Alzheimer’s Dis JAD. 2013;35(1):7–43. doi:10.3233/JAD-121909.

    CAS  PubMed  Google Scholar 

  • Wan L, Nie G, Zhang J, Luo Y, Zhang P, Zhang Z, Zhao B. Beta-amyloid peptide increases levels of iron content and oxidative stress in human cell and Caenorhabditis elegans models of Alzheimer disease. Free Radic Biol Med. 2011;50(1):122–9. doi:10.1016/j.freeradbiomed.2010.10.707.

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Du Y. Cadmium and its neurotoxic effects. Oxidative Med Cell Longev. 2013;2013:898034. doi:10.1155/2013/898034.

    Google Scholar 

  • Wang D, Xing X. Assessment of locomotion behavioral defects induced by acute toxicity from heavy metal exposure in nematode Caenorhabditis elegans. J Environ Sci. 2008;20(9):1132–7.

    Article  CAS  Google Scholar 

  • Wang D, Shen L, Wang Y. The phenotypic and behavioral defects can be transferred from zinc-exposed nematodes to their progeny. Environ Toxicol Pharmacol. 2007;24(3):223–30. doi:10.1016/j.etap.2007.05.009.

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Xu ZJ, Wu YQ, Qin LW, Li ZY, Wu ZX. Off-response in ASH neurons evoked by CuSO4 requires the TRP channel OSM-9 in Caenorhabditis elegans. Biochem Biophys Res Commun. 2015;461(3):463–8. doi:10.1016/j.bbrc.2015.04.017.

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Qi Y, Zhang X, Gu X, Cai H, Yang J, Zhang Y. ROS act as an upstream signal to mediate cadmium-induced mitophagy in mouse brain. Neurotoxicology. 2015;46:19–24. doi:10.1016/j.neuro.2014.11.007.

    Article  CAS  PubMed  Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond Ser B Biol Sci. 1986;314(1165):1–340.

    Article  CAS  Google Scholar 

  • White AR, Multhaup G, Galatis D, McKinstry WJ, Parker MW, Pipkorn R, Beyreuther K, Masters CL, Cappai R. Contrasting, species-dependent modulation of copper-mediated neurotoxicity by the Alzheimer’s disease amyloid precursor protein. J Neurosci. 2002;22(2):365–76.

    CAS  PubMed  Google Scholar 

  • WHO. Guidelines for drinking-water quality in health criteria and other supporting information, vol. 2. Geneva: WHO; 1996.

    Google Scholar 

  • Williams PL, Dusenbery DB. A promising indicator of neurobehavioral toxicity using the nematode Caenorhabditis elegans and computer tracking. Toxicol Ind Health. 1990;6(3–4):425–40.

    Article  CAS  PubMed  Google Scholar 

  • Wright RO, Baccarelli A. Metals and neurotoxicology. J Nutr. 2007;137(12):2809–13.

    CAS  PubMed  Google Scholar 

  • Wu J, Basha MR, Brock B, Cox DP, Cardozo-Pelaez F, McPherson CA, Harry J, Rice DC, Maloney B, Chen D, Lahiri DK, Zawia NH. Alzheimer’s disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. J Neurosci. 2008;28(1):3–9. doi:10.1523/JNEUROSCI.4405-07.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Li Y, Tang M, Wang D. Evaluation of environmental safety concentrations of DMSA coated Fe2O3-NPs using different assay systems in nematode Caenorhabditis elegans. PLoS One. 2012;7(8):e43729. doi:10.1371/journal.pone.0043729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Nouara A, Li Y, Zhang M, Wang W, Tang M, Ye B, Ding J, Wang D. Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans. Chemosphere. 2013;90(3):1123–31. doi:10.1016/j.chemosphere.2012.09.019.

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Zhao Y, Li Y, Wang D. Susceptible genes regulate the adverse effects of TiO2-NPs at predicted environmental relevant concentrations on nematode Caenorhabditis elegans. Nanomed Nanotechnol Biol Med. 2014;10(6):1263–71. doi:10.1016/j.nano.2014.03.010.

    Article  CAS  Google Scholar 

  • Wu T, He K, Zhan Q, Ang S, Ying J, Zhang S, Zhang T, Xue Y, Tang M. MPA-capped CdTe quantum dots exposure causes neurotoxic effects in nematode Caenorhabditis elegans by affecting the transporters and receptors of glutamate, serotonin and dopamine at the genetic level, or by increasing ROS, or both. Nanoscale. 2015;7(48):20460–73. doi:10.1039/c5nr05914c.

    Article  CAS  PubMed  Google Scholar 

  • Xing XJ, Rui Q, Du M, Wang DY. Exposure to lead and mercury in young larvae induces more severe deficits in neuronal survival and synaptic function than in adult nematodes. Arch Environ Contam Toxicol. 2009;56(4):732–41. doi:10.1007/s00244-009-9307-x.

    Article  CAS  PubMed  Google Scholar 

  • Ye H, Ye B, Wang D. Trace administration of vitamin E can retrieve and prevent UV-irradiation- and metal exposure-induced memory deficits in nematode Caenorhabditis elegans. Neurobiol Learn Mem. 2008;90(1):10–8. doi:10.1016/j.nlm.2007.12.001.

    Article  CAS  PubMed  Google Scholar 

  • Ye B, Rui Q, Wu Q, Wang D. Metallothioneins are required for formation of cross-adaptation response to neurobehavioral toxicity from lead and mercury exposure in nematodes. PLoS One. 2010;5(11):e14052. doi:10.1371/journal.pone.0014052.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yokel RA, Rhineheimer SS, Sharma P, Elmore D, McNamara PJ. Entry, half-life, and desferrioxamine-accelerated clearance of brain aluminum after a single (26)al exposure. Toxicol Sci. 2001;64(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  • Zeitoun-Ghandour S, Charnock JM, Hodson ME, Leszczyszyn OI, Blindauer CA, Sturzenbaum SR. The two Caenorhabditis elegans metallothioneins (CeMT-1 and CeMT-2) discriminate between essential zinc and toxic cadmium. FEBS J. 2010;277(11):2531–42. doi:10.1111/j.1742-4658.2010.07667.x.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Ye B, Wang D. Effects of metal exposure on associative learning behavior in nematode Caenorhabditis elegans. Arch Environ Contam Toxicol. 2010;59(1):129–36. doi:10.1007/s00244-009-9456-y.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Wu Q, Tang M, Wang D. The in vivo underlying mechanism for recovery response formation in nano-titanium dioxide exposed Caenorhabditis elegans after transfer to the normal condition. Nanomed Nanotechnol Biol Med. 2014;10(1):89–98. doi:10.1016/j.nano.2013.07.004.

    Article  CAS  Google Scholar 

  • Zhao Y, Wang X, Wu Q, Li Y, Wang D. Translocation and neurotoxicity of CdTe quantum dots in RMEs motor neurons in nematode Caenorhabditis elegans. J Hazard Mater. 2015;283:480–9. doi:10.1016/j.jhazmat.2014.09.063.

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Xie W, Pan T, Xu P, Fridkin M, Zheng H, Jankovic J, Youdim MB, Le W. Prevention and restoration of lactacystin-induced nigrostriatal dopamine neuron degeneration by novel brain-permeable iron chelators. FASEB J. 2007;21(14):3835–44. doi:10.1096/fj.07-8386com.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Felix Antunes Soares or Daiana Silva Avila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Soares, F.A., Fagundez, D.A., Avila, D.S. (2017). Neurodegeneration Induced by Metals in Caenorhabditis elegans . In: Aschner, M., Costa, L. (eds) Neurotoxicity of Metals. Advances in Neurobiology, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-60189-2_18

Download citation

Publish with us

Policies and ethics