Advertisement

Neurodegeneration Induced by Metals in Caenorhabditis elegans

  • Felix Antunes SoaresEmail author
  • Daiandra Almeida Fagundez
  • Daiana Silva AvilaEmail author
Chapter
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 18)

Abstract

Metals are a component of a variety of ecosystems and organisms. They can generally be divided into essential and nonessential metals. The essential metals are involved in physiological processes once the deficiency of these metals has been associated with diseases. Although iron, manganese, copper, and zinc are important for life, it has been evidenced that they are also involved in neuronal damage in many neurodegenerative disorders. Nonessential metals, which are metals without physiological functions, are present in trace or higher levels in living organisms. Occupational, environmental, or deliberate exposures to lead, mercury, aluminum, and cadmium are clearly correlated with the increase of toxicity and varied kinds of pathological situations. Actually, the field of neurotoxicology needs to satisfy two opposing demands: the testing of a growing list of chemicals and resource limitations and ethical concerns associated with testing using traditional mammalian species. Toxicological assays using alternative animal models may relieve some of this pressure by allowing testing of more compounds while reducing expenses and using fewer mammals. The nervous system is by far the more complex system in C. elegans. Almost a third of their cells are neurons (302 neurons versus 959 cells in adult hermaphrodite). It initially underwent extensive development as a model organism in order to study the nervous system, and its neuronal lineage and the complete wiring diagram of its nervous system are stereotyped and fully described. The neurotransmission systems are phylogenetically conserved from nematodes to vertebrates, which allows for findings from C. elegans to be extrapolated and further confirmed in vertebrate systems. Different strains of C. elegans offer a new perspective on neurodegenerative processes. Some genes have been found to be related to neurodegeneration induced by metals. Studying these interactions may be an effective tool to slow neuronal loss and deterioration.

Keywords

Lead Mercury Aluminum Cadmium Iron Manganese Copper Zinc Neurodegenerative diseases 

References

  1. Aisen P, Enns C, Wessling-Resnick M. Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol. 2001;33(10):940–59.PubMedCrossRefGoogle Scholar
  2. Alfrey AC, LeGendre GR, Kaehny WD. The dialysis encephalopathy syndrome. Possible aluminum intoxication. N Engl J Med. 1976;294(4):184–8. doi: 10.1056/NEJM197601222940402.PubMedCrossRefGoogle Scholar
  3. Anderson GL, Cole RD, Williams PL. Assessing behavioral toxicity with Caenorhabditis elegans. Environ Toxicol Chem. 2004;23(5):1235–40.PubMedCrossRefGoogle Scholar
  4. Angeli S, Barhydt T, Jacobs R, Killilea DW, Lithgow GJ, Andersen JK. Manganese disturbs metal and protein homeostasis in Caenorhabditis elegans. Metallomics : integrated biometal science. 2014;6(10):1816–23. doi: 10.1039/c4mt00168k.CrossRefGoogle Scholar
  5. Antonio MT, Corredor L, Leret ML. Study of the activity of several brain enzymes like markers of the neurotoxicity induced by perinatal exposure to lead and/or cadmium. Toxicol Lett. 2003;143(3):331–40.PubMedCrossRefGoogle Scholar
  6. Aschner M, Syversen T. Methylmercury: recent advances in the understanding of its neurotoxicity. Ther Drug Monit. 2005;27(3):278–83.PubMedCrossRefGoogle Scholar
  7. Au C, Benedetto A, Aschner M. Manganese transport in eukaryotes: the role of DMT1. Neurotoxicology. 2008;29(4):569–76. doi: 10.1016/j.neuro.2008.04.022.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Au C, Benedetto A, Anderson J, Labrousse A, Erikson K, Ewbank JJ, Aschner Mn.d.. SMF-1, SMF-2 and SMF-3 DMT1 orthologues regulate and are regulated differentially by manganese levels in C. elegans. PloS one. 2009;4(11):e7792. doi: 10.1371/journal.pone.0007792.
  9. Avery L, Horvitz HR. Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans. Neuron. 1989;3(4):473–85.PubMedCrossRefGoogle Scholar
  10. Bargmann CI, Thomas JH, Horvitz HR. Chemosensory cell function in the behavior and development of Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol. 1990;55:529–38.PubMedCrossRefGoogle Scholar
  11. Bartzokis G, Beckson M, Hance DB, Marx P, Foster JA, Marder SR. MR evaluation of age-related increase of brain iron in young adult and older normal males. Magn Reson Imaging. 1997;15(1):29–35.PubMedCrossRefGoogle Scholar
  12. Basha MR, Wei W, Bakheet SA, Benitez N, Siddiqi HK, Ge YW, Lahiri DK, Zawia NH. The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. J Neurosci. 2005;25(4):823–9. doi: 10.1523/JNEUROSCI.4335-04.2005.PubMedCrossRefGoogle Scholar
  13. Benedetto A, Au C, Aschner M. Manganese-induced dopaminergic neurodegeneration: insights into mechanisms and genetics shared with Parkinson’s disease. Chem Rev. 2009;109(10):4862–84. doi: 10.1021/cr800536y.PubMedCrossRefGoogle Scholar
  14. Benedetto A, Au C, Avila DS, Milatovic D, Aschner M. Extracellular dopamine potentiates mn-induced oxidative stress, lifespan reduction, and dopaminergic neurodegeneration in a BLI-3-dependent manner in Caenorhabditis elegans. PLoS Genet. 2010;6(8) doi: 10.1371/journal.pgen.1001084.
  15. Berg D, Youdim MB. Role of iron in neurodegenerative disorders. Top Magn Resonan Imag TMRI. 2006;17(1):5–17. doi: 10.1097/01.rmr.0000245461.90406.ad.CrossRefGoogle Scholar
  16. Bharathi VP, Govindaraju M, Palanisamy AP, Sambamurti K, Rao KS. Molecular toxicity of aluminium in relation to neurodegeneration. Indian J Med Res. 2008;128(4):545–56.Google Scholar
  17. Bishak YK, Payahoo L, Osatdrahimi A, Nourazarian A. Mechanisms of cadmium carcinogenicity in the gastrointestinal tract. Asian Pac J Cancer Prev. 2015;16(1):9–21.PubMedCrossRefGoogle Scholar
  18. Boelmans K, Holst B, Hackius M, Finsterbusch J, Gerloff C, Fiehler J, Munchau A. Brain iron deposition fingerprints in Parkinson’s disease and progressive supranuclear palsy. Mov Disord. 2012;27(3):421–7. doi: 10.1002/mds.24926.PubMedCrossRefGoogle Scholar
  19. Bofill R, Orihuela R, Romagosa M, Domenech J, Atrian S, Capdevila M. Caenorhabditis elegans Metallothionein isoform specificity--metal binding abilities and the role of histidine in CeMT1 and CeMT2. FEBS J. 2009;276(23):7040–56. doi: 10.1111/j.1742-4658.2009.07417.x.PubMedCrossRefGoogle Scholar
  20. Bonifati V. Genetics of Parkinson’s disease. Minerva Med. 2005;96(3):175–86.PubMedGoogle Scholar
  21. Bornhorst J, Chakraborty S, Meyer S, Lohren H, Brinkhaus SG, Knight AL, Caldwell KA, Caldwell GA, Karst U, Schwerdtle T, Bowman A, Aschner M. The effects of pdr1, djr1.1 and pink1 loss in manganese-induced toxicity and the role of alpha-synuclein in C. elegans. Metallom Integr Biometal Sci. 2014;6(3):476–90. doi: 10.1039/c3mt00325f.CrossRefGoogle Scholar
  22. Bourgeois F, Ben-Yakar A. Femtosecond laser nanoaxotomy properties and their effect on axonal recovery in C. elegans. Opt Express. 2007;15(14):8521–31.PubMedCrossRefGoogle Scholar
  23. Bowman AB, Kwakye GF, Herrero Hernandez E, Aschner M. Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol. 2011;25(4):191–203. doi: 10.1016/j.jtemb.2011.08.144.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Boyd WA, Smith MV, Kissling GE, Freedman JH. Medium- and high-throughput screening of neurotoxicants using C. elegans. Neurotoxicol Teratol. 2010;32(1):68–73. doi: 10.1016/j.ntt.2008.12.004.PubMedCrossRefGoogle Scholar
  25. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77(1):71–94.PubMedPubMedCentralGoogle Scholar
  26. Brinkhaus SG, Bornhorst J, Chakraborty S, Wehe CA, Niehaus R, Reifschneider O, Aschner M, Karst U. Elemental bioimaging of manganese uptake in C. elegans. Metallom Integr Biometal Sci. 2014;6(3):617–21. doi: 10.1039/c3mt00334e.CrossRefGoogle Scholar
  27. Bush AI. Metals and neuroscience. Curr Opin Chem Biol. 2000;4(2):184–91.PubMedCrossRefGoogle Scholar
  28. Campbell A. n.d. The potential role of aluminium in Alzheimer’s disease. Nephrol Dial Transplant. (2002;17(Suppl 2):17–20.Google Scholar
  29. Cerpa WF, Barria MI, Chacon MA, Suazo M, Gonzalez M, Opazo C, Bush AI, Inestrosa NC. The N-terminal copper-binding domain of the amyloid precursor protein protects against Cu2+ neurotoxicity in vivo. FASEB J. 2004;18(14):1701–3. doi: 10.1096/fj.03-1349fje.PubMedGoogle Scholar
  30. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression. Science. 1994;263(5148):802–5.PubMedCrossRefGoogle Scholar
  31. Chege PM, McColl G. Caenorhabditis elegans: a model to investigate oxidative stress and metal dyshomeostasis in Parkinson’s disease. Front Aging Neurosci. 2014;6:89. doi: 10.3389/fnagi.2014.00089.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chen BL, Hall DH, Chklovskii DB. Wiring optimization can relate neuronal structure and function. Proc Natl Acad Sci U S A. 2006;103(12):4723–8. doi: 10.1073/pnas.0506806103.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Chen P, Martinez-Finley EJ, Bornhorst J, Chakraborty S, Aschner Mn.d.-a. Metal-induced neurodegeneration in C. elegans. Front Aging Neurosci. 2013;5:18. doi: 10.3389/fnagi.2013.00018.
  34. Chen P, DeWitt MR, Bornhorst J, Soares FA, Mukhopadhyay S, Bowman AB, Aschner M. Age- and manganese-dependent modulation of dopaminergic phenotypes in a C. elegans DJ-1 genetic model of Parkinson’s disease. Metallom Integr Biometal Sci. 2015;7(2):289–98. doi: 10.1039/c4mt00292j.CrossRefGoogle Scholar
  35. Chen P, Miah MR, Aschner M. n.d.-b Metals and Neurodegeneration. F1000Research 5. 2016. doi: 10.12688/f1000research.7431.1
  36. Contreras EQ, Puppala HL, Escalera G, Zhong W, Colvin VL. Size-dependent impacts of silver nanoparticles on the lifespan, fertility, growth, and locomotion of Caenorhabditis elegans. Environ Toxicol Chem. 2014;33(12):2716–23. doi: 10.1002/etc.2705.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Cui Y, McBride SJ, Boyd WA, Alper S, Freedman JH. Toxicogenomic analysis of Caenorhabditis elegans reveals novel genes and pathways involved in the resistance to cadmium toxicity. Genome Biol. 2007;8(6):R122. doi: 10.1186/gb-2007-8-6-r122.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Dahms SO, Konnig I, Roeser D, Guhrs KH, Mayer MC, Kaden D, Multhaup G, Than ME. Metal binding dictates conformation and function of the amyloid precursor protein (APP) E2 domain. J Mol Biol. 2012;416(3):438–52. doi: 10.1016/j.jmb.2011.12.057.PubMedCrossRefGoogle Scholar
  39. De Marco EV, Annesi G, Tarantino P, Nicoletti G, Civitelli D, Messina D, Annesi F, Arabia G, Salsone M, Condino F, Novellino F, Provenzano G, Rocca FE, Colica C, Morelli M, Scornaienchi V, Greco V, Giofre L, Quattrone A. DJ-1 is a Parkinson’s disease susceptibility gene in southern Italy. Clin Genet. 2010;77(2):183–8. doi: 10.1111/j.1399-0004.2009.01310.x.PubMedCrossRefGoogle Scholar
  40. Debes F, Budtz-Jorgensen E, Weihe P, White RF, Grandjean P. Impact of prenatal methylmercury exposure on neurobehavioral function at age 14 years. Neurotoxicol Teratol. 2006;28(5):536–47. doi: 10.1016/j.ntt.2006.02.005.PubMedCrossRefGoogle Scholar
  41. Dhawan R, Dusenbery DB, Williams PL. Comparison of lethality, reproduction, and behavior as toxicological endpoints in the nematode Caenorhabditis elegans. J Toxicol Environ Health A. 1999;58(7):451–62.PubMedCrossRefGoogle Scholar
  42. Dietrich N, Tan CH, Cubillas C, Earley BJ, Kornfeld K. Insights into zinc and cadmium biology in the nematode Caenorhabditis elegans. Arch Biochem Biophys. 2016; doi: 10.1016/j.abb.2016.05.021.
  43. Dinocourt C, Legrand M, Dublineau I, Lestaevel P. The neurotoxicology of uranium. Toxicology. 2015;337:58–71. doi: 10.1016/j.tox.2015.08.004.PubMedCrossRefGoogle Scholar
  44. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72. doi: 10.1016/j.cell.2012.03.042.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Dobson AW, Lack AK, Erikson KM, Aschner M. Depleted uranium is not toxic to rat brain endothelial (RBE4) cells. Biol Trace Elem Res. 2006;110(1):61–72. doi: 10.1385/BTER:110:1:61.PubMedCrossRefGoogle Scholar
  46. Domingo JL. Aluminum and other metals in Alzheimer’s disease: a review of potential therapy with chelating agents. J Alzheimer’s Dis JAD. 2006;10(2–3):331–41.PubMedCrossRefGoogle Scholar
  47. Du M, Wang D. The neurotoxic effects of heavy metal exposure on GABAergic nervous system in nematode Caenorhabditis elegans. Environ Toxicol Pharmacol. 2009;27(3):314–20. doi: 10.1016/j.etap.2008.11.011.PubMedCrossRefGoogle Scholar
  48. Duce JA, Bush AI. Biological metals and Alzheimer’s disease: implications for therapeutics and diagnostics. Prog Neurobiol. 2010;92(1):1–18. doi: 10.1016/j.pneurobio.2010.04.003.PubMedCrossRefGoogle Scholar
  49. Duce JA, Tsatsanis A, Cater MA, James SA, Robb E, Wikhe K, Leong SL, Perez K, Johanssen T, Greenough MA, Cho HH, Galatis D, Moir RD, Masters CL, McLean C, Tanzi RE, Cappai R, Barnham KJ, Ciccotosto GD, Rogers JT, Bush AI. Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell. 2010;142(6):857–67. doi: 10.1016/j.cell.2010.08.014.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Dusek P, Jankovic J, Le W. Iron dysregulation in movement disorders. Neurobiol Dis. 2012;46(1):1–18. doi: 10.1016/j.nbd.2011.12.054.PubMedCrossRefGoogle Scholar
  51. Dutilleul M, Lemaire L, Reale D, Lecomte C, Galas S, Bonzom JM. Rapid phenotypic changes in Caenorhabditis elegans under uranium exposure. Ecotoxicology. 2013;22(5):862–8. doi: 10.1007/s10646-013-1090-9.PubMedCrossRefGoogle Scholar
  52. EFSA. Cadmium in food. EFSA J. 2009;53:1–139.Google Scholar
  53. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol. 2005;3:6. doi: 10.1186/1477-3155-3-6.CrossRefGoogle Scholar
  54. Erikson KM, John CE, Jones SR, Aschner M. Manganese accumulation in striatum of mice exposed to toxic doses is dependent upon a functional dopamine transporter. Environ Toxicol Pharmacol. 2005;20(3):390–4. doi: 10.1016/j.etap.2005.03.009.PubMedCrossRefGoogle Scholar
  55. Esposito G, Amoroso MR, Bergamasco C, Di Schiavi E, Bazzicalupo P. The G protein regulators EGL-10 and EAT-16, the Gialpha GOA-1 and the G(q)alpha EGL-30 modulate the response of the C. elegans ASH polymodal nociceptive sensory neurons to repellents. BMC Biol. 2010;8:138. doi: 10.1186/1741-7007-8-138.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Eto K, Marumoto M, Takeya M. The pathology of methylmercury poisoning (Minamata disease): the 50th anniversary of Japanese Society of Neuropathology. Neuropathology. 2010;30(5):471–9. doi: 10.1111/j.1440-1789.2010.01119.x.PubMedGoogle Scholar
  57. Exley C. Aluminium and iron, but neither copper nor zinc, are key to the precipitation of beta-sheets of Abeta_{42} in senile plaque cores in Alzheimer’s disease. J Alzheimer’s Dis JAD. 2006;10(2–3):173–7.PubMedCrossRefGoogle Scholar
  58. Fagundez DA, Camara DF, Salgueiro WG, Noremberg S, Luiz Puntel R, Piccoli JE, Garcia SC, da Rocha JBT, Aschner M, Avila DS. Behavioral and dopaminergic damage induced by acute iron toxicity in Caenorhabditis elegans. Toxicol Res. 2015;4(4):878–84. doi: 10.1039/C4TX00120F.CrossRefGoogle Scholar
  59. Farina M, Avila DS, da Rocha JB, Aschner M. Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int. 2013;62(5):575–94. doi: 10.1016/j.neuint.2012.12.006.PubMedCrossRefGoogle Scholar
  60. Fitsanakis VA, Erikson KM, Garcia SJ, Evje L, Syversen T, Aschner M. Brain accumulation of depleted uranium in rats following 3- or 6-month treatment with implanted depleted uranium pellets. Biol Trace Elem Res. 2006;111(1–3):185–97. doi: 10.1385/BTER:111:1:185.PubMedCrossRefGoogle Scholar
  61. Fraga CG, Oteiza PI. Iron toxicity and antioxidant nutrients. Toxicology. 2002;180(1):23–32.PubMedCrossRefGoogle Scholar
  62. Friedman A, Galazka-Friedman J, Koziorowski D. Iron as a cause of Parkinson disease - a myth or a well established hypothesis? Parkinsonism Relat Disord. 2009;15(Suppl 3):S212–4. doi: 10.1016/S1353-8020(09)70817-X.PubMedCrossRefGoogle Scholar
  63. Gaeta A, Hider RC. The crucial role of metal ions in neurodegeneration: the basis for a promising therapeutic strategy. Br J Pharmacol. 2005;146(8):1041–59. doi: 10.1038/sj.bjp.0706416.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Gonzalez-Hunt CP, Leung MC, Bodhicharla RK, McKeever MG, Arrant AE, Margillo KM, Ryde IT, Cyr DD, Kosmaczewski SG, Hammarlund M, Meyer JN. Exposure to mitochondrial genotoxins and dopaminergic neurodegeneration in Caenorhabditis elegans. PLoS One. 2014;9(12):e114459. doi: 10.1371/journal.pone.0114459.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Gotz W. History of treatment of Parkinson disease. Pharm Unserer Zeit. 2006;35(3):190–7.PubMedCrossRefGoogle Scholar
  66. Grimaud J, Millar J, Thorpe JW, Moseley IF, McDonald WI, Miller DH. Signal intensity on MRI of basal ganglia in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1995;59(3):306–8.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Guo M, Wu TH, Song YX, Ge MH, Su CM, Niu WP, Li LL, Xu ZJ, Ge CL, Al-Mhanawi MT, Wu SP, Wu ZX. Reciprocal inhibition between sensory ASH and ASI neurons modulates nociception and avoidance in Caenorhabditis elegans. Nat Commun. 2015;6:5655. doi: 10.1038/ncomms6655.PubMedCrossRefGoogle Scholar
  68. Gupta VB, Anitha S, Hegde ML, Zecca L, Garruto RM, Ravid R, Shankar SK, Stein R, Shanmugavelu P, Jagannatha Rao KS. Aluminium in Alzheimer’s disease: are we still at a crossroad? Cellul Mol Life Sci CMLS. 2005;62(2):143–58. doi: 10.1007/s00018-004-4317-3.CrossRefGoogle Scholar
  69. Helmcke KJ, Aschner M. Hormetic effect of methylmercury on Caenorhabditis elegans. Toxicol Appl Pharmacol. 2010;248(2):156–64. doi: 10.1016/j.taap.2010.07.023.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Helmcke KJ, Syversen T, Miller DM 3rd, Aschner M. Characterization of the effects of methylmercury on Caenorhabditis elegans. Toxicol Appl Pharmacol. 2009;240(2):265–72. doi: 10.1016/j.taap.2009.03.013.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Hilliard MA, Bargmann CI, Bazzicalupo P. C. elegans Responds to chemical repellents by integrating sensory inputs from the head and the tail. Current biology : CB. 2002;12(9):730–4.PubMedCrossRefGoogle Scholar
  72. Hoss S, Schlottmann K, Traunspurger W. Toxicity of ingested cadmium to the nematode Caenorhabditis elegans. Environ Sci Technol. 2011;45(23):10219–25. doi: 10.1021/es2027136.PubMedCrossRefGoogle Scholar
  73. Hossain S, Liu HN, Nguyen M, Shore G, Almazan G. Cadmium exposure induces mitochondria-dependent apoptosis in oligodendrocytes. Neurotoxicology. 2009;30(4):544–54. doi: 10.1016/j.neuro.2009.06.001.PubMedCrossRefGoogle Scholar
  74. Houpert P, Lestaevel P, Bussy C, Paquet F, Gourmelon P. Enriched but not depleted uranium affects central nervous system in long-term exposed rat. Neurotoxicology. 2005;26(6):1015–20. doi: 10.1016/j.neuro.2005.05.005.PubMedCrossRefGoogle Scholar
  75. Hu YO, Wang Y, Ye BP, Wang DY. Phenotypic and behavioral defects induced by iron exposure can be transferred to progeny in Caenorhabditis elegans. Biomedical Environ Sci BES. 2008;21(6):467–73. doi: 10.1016/S0895-3988(09)60004-0.CrossRefGoogle Scholar
  76. IARC. n.d. Cadmium and certain cadmium compounds in IARC monographs on the EValuation the carcinogenic risk of chemicals to humans. Beryllium cadmium, mercury and exposures in the glass manufacturing industry, vol 58. World Health Organization, Lyon. 1993.Google Scholar
  77. Ijomone OM, Miah MR, Peres TV, Nwoha PU, Aschner M. Null allele mutants of trt-1, the catalytic subunit of telomerase in Caenorhabditis elegans, are less sensitive to Mn-induced toxicity and DAergic degeneration. Neurotoxicology. 2016;57:54–60. doi: 10.1016/j.neuro.2016.08.016.PubMedCrossRefGoogle Scholar
  78. Jiang GC, Tidwell K, McLaughlin BA, Cai J, Gupta RC, Milatovic D, Nass R, Aschner M. Neurotoxic potential of depleted uranium effects in primary cortical neuron cultures and in Caenorhabditis elegans. Toxicol Sci. 2007a;99(2):553–65. doi: 10.1093/toxsci/kfm171.PubMedCrossRefGoogle Scholar
  79. Jiang LF, Yao TM, Zhu ZL, Wang C, Ji LN. Impacts of cd(II) on the conformation and self-aggregation of Alzheimer’s tau fragment corresponding to the third repeat of microtubule-binding domain. Biochim Biophys Acta. 2007b;1774(11):1414–21. doi: 10.1016/j.bbapap.2007.08.014.PubMedCrossRefGoogle Scholar
  80. Jiang GC, Hughes S, Sturzenbaum SR, Evje L, Syversen T, Aschner M. Caenorhabditis elegans Metallothioneins protect against toxicity induced by depleted uranium. Toxicol Sci. 2009;111(2):345–54. doi: 10.1093/toxsci/kfp161.PubMedCrossRefGoogle Scholar
  81. Jiang Y, Chen J, Wu Y, Wang Q, Li H. Sublethal toxicity endpoints of heavy metals to the nematode Caenorhabditis elegans. PLoS One. 2016;11(1):e0148014. doi: 10.1371/journal.pone.0148014.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Jorgensen EM. n.d. Gaba. WormBook : the online review of C elegans biology. 2005;1–13. doi: 10.1895/wormbook.1.14.1.
  83. Jung SK, Qu X, Aleman-Meza B, Wang T, Riepe C, Liu Z, Li Q, Zhong W. Multi-endpoint, high-throughput study of nanomaterial toxicity in Caenorhabditis elegans. Environ Sci Technol. 2015;49(4):2477–85. doi: 10.1021/es5056462.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Khare P, Sonane M, Pandey R, Ali S, Gupta KC, Satish A. Adverse effects of TiO2 and ZnO nanoparticles in soil nematode, Caenorhabditis elegans. J Biomed Nanotechnol. 2011;7(1):116–7.PubMedCrossRefGoogle Scholar
  85. Khare P, Sonane M, Nagar Y, Moin N, Ali S, Gupta KC, Satish A. Size dependent toxicity of zinc oxide nano-particles in soil nematode Caenorhabditis elegans. Nanotoxicology. 2015;9(4):423–32. doi: 10.3109/17435390.2014.940403.PubMedCrossRefGoogle Scholar
  86. Kim SO, Merchant K, Nudelman R, Beyer WF Jr, Keng T, DeAngelo J, Hausladen A, Stamler JS. OxyR: a molecular code for redox-related signaling. Cell. 2002;109(3):383–96.PubMedCrossRefGoogle Scholar
  87. Kim DK, Park JD, Choi BS. Mercury-induced amyloid-beta (Abeta) accumulation in the brain is mediated by disruption of Abeta transport. J Toxicol Sci. 2014;39(4):625–35.PubMedCrossRefGoogle Scholar
  88. Klang IM, Schilling B, Sorensen DJ, Sahu AK, Kapahi P, Andersen JK, Swoboda P, Killilea DW, Gibson BW, Lithgow GJ. n.d. Iron promotes protein insolubility and aging in C. elegans. Aging. 2014;6(11):975–91. doi: 10.18632/aging.100689.
  89. Levenson CW. Trace metal regulation of neuronal apoptosis: from genes to behavior. Physiol Behav. 2005;86(3):399–406. doi: 10.1016/j.physbeh.2005.08.010.PubMedCrossRefGoogle Scholar
  90. Lewinska-Preis L, Jablonska M, Fabianska MJ, Kita A. Bioelements and mineral matter in human livers from the highly industrialized region of the upper Silesia Coal Basin (Poland). Environ Geochem Health. 2011;33(6):595–611. doi: 10.1007/s10653-011-9373-7.PubMedCrossRefGoogle Scholar
  91. Li Y, Yu S, Wu Q, Tang M, Pu Y, Wang D. Chronic Al2O3-nanoparticle exposure causes neurotoxic effects on locomotion behaviors by inducing severe ROS production and disruption of ROS defense mechanisms in nematode Caenorhabditis elegans. J Hazard Mater. 2012;219-220:221–30. doi: 10.1016/j.jhazmat.2012.03.083.PubMedCrossRefGoogle Scholar
  92. Li Y, Yu S, Wu Q, Tang M, Wang D. Transmissions of serotonin, dopamine, and glutamate are required for the formation of neurotoxicity from Al2O3-NPs in nematode Caenorhabditis elegans. Nanotoxicology. 2013;7(5):1004–13. doi: 10.3109/17435390.2012.689884.PubMedCrossRefGoogle Scholar
  93. Lidsky TI, Schneider JS. Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain J Neurol. 2003;126(Pt 1):5–19.CrossRefGoogle Scholar
  94. Lin YT, Hoang H, Hsieh SI, Rangel N, Foster AL, Sampayo JN, Lithgow GJ, Srinivasan C. Manganous ion supplementation accelerates wild type development, enhances stress resistance, and rescues the life span of a short-lived Caenorhabditis elegans mutant. Free Radic Biol Med. 2006;40(7):1185–93. doi: 10.1016/j.freeradbiomed.2005.11.007.PubMedCrossRefGoogle Scholar
  95. Lints R, Emmons SW. Patterning of dopaminergic neurotransmitter identity among Caenorhabditis elegans ray sensory neurons by a TGFbeta family signaling pathway and a Hox gene. Development. 1999;126(24):5819–31.PubMedGoogle Scholar
  96. Lopez E, Arce C, Oset-Gasque MJ, Canadas S, Gonzalez MP. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radic Biol Med. 2006;40(6):940–51. doi: 10.1016/j.freeradbiomed.2005.10.062.PubMedCrossRefGoogle Scholar
  97. Lubick N. Mercury alters immune system response in artisanal gold miners. Environ Health Perspect. 2010;118(6):A243. doi: 10.1289/ehp.118-a243.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Lukawski K, Nieradko B, Sieklucka-Dziuba M. Effects of cadmium on memory processes in mice exposed to transient cerebral oligemia. Neurotoxicol Teratol. 2005;27(4):575–84. doi: 10.1016/j.ntt.2005.05.009.PubMedCrossRefGoogle Scholar
  99. Luo Y, Zhang J, Liu N, Luo Y, Zhao B. Copper ions influence the toxicity of beta-amyloid(1-42) in a concentration-dependent manner in a Caenorhabditis elegans model of Alzheimer’s disease. Sci China Life Sci. 2011;54(6):527–34. doi: 10.1007/s11427-011-4180-z.PubMedCrossRefGoogle Scholar
  100. Ma H, Bertsch PM, Glenn TC, Kabengi NJ, Williams PL. Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ Toxicol Chem. 2009;28(6):1324–30. doi: 10.1897/08-262.1.PubMedCrossRefGoogle Scholar
  101. Marchetti C. Molecular targets of lead in brain neurotoxicity. Neurotox Res. 2003;5(3):221–36.PubMedCrossRefGoogle Scholar
  102. Martinez-Finley EJ, Avila DS, Chakraborty S, Aschner M. Insights from Caenorhabditis elegans on the role of metals in neurodegenerative diseases. Metallom Integr Biometal Sci. 2011;3(3):271–9. doi: 10.1039/c0mt00064g.CrossRefGoogle Scholar
  103. Martinez-Finley EJ, Chakraborty S, Slaughter JC, Aschner M. Early-life exposure to methylmercury in wildtype and pdr-1/parkin knockout C. elegans. Neurochem Res. 2013;38(8):1543–52. doi: 10.1007/s11064-013-1054-8.PubMedPubMedCentralCrossRefGoogle Scholar
  104. McDiarmid MA, Engelhardt SM, Dorsey CD, Oliver M, Gucer P, Wilson PD, Kane R, Cernich A, Kaup B, Anderson L, Hoover D, Brown L, Albertini R, Gudi R, Squibb KS. Surveillance results of depleted uranium-exposed gulf war I veterans: sixteen years of follow-up. J Toxicol Environ Health A. 2009;72(1):14–29. doi: 10.1080/15287390802445400.PubMedCrossRefGoogle Scholar
  105. McElwee MK, Freedman JH. Comparative toxicology of mercurials in Caenorhabditis elegans. Environ Toxicol Chem. 2011;30(9):2135–41. doi: 10.1002/etc.603.PubMedPubMedCentralCrossRefGoogle Scholar
  106. McElwee MK, Ho LA, Chou JW, Smith MV, Freedman JH. Comparative toxicogenomic responses of mercuric and methyl-mercury. BMC Genomics. 2013;14:698. doi: 10.1186/1471-2164-14-698.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Minniti AN, Rebolledo DL, Grez PM, Fadic R, Aldunate R, Volitakis I, Cherny RA, Opazo C, Masters C, Bush AI, Inestrosa NC. Intracellular amyloid formation in muscle cells of Abeta-transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification. Mol Neurodegener. 2009;4:2. doi: 10.1186/1750-1326-4-2.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Mizoroki T, Meshitsuka S, Maeda S, Murayama M, Sahara N, Takashima A. Aluminum induces tau aggregation in vitro but not in vivo. J Alzheimer’s Dis JAD. 2007;11(4):419–27.PubMedCrossRefGoogle Scholar
  109. Multhaup G, Schlicksupp A, Hesse L, Beher D, Ruppert T, Masters CL, Beyreuther K. The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(II) to copper(I). Science. 1996;271(5254):1406–9.PubMedCrossRefGoogle Scholar
  110. Neghab M, Norouzi MA, Choobineh A, Kardaniyan MR, Zadeh JH. Health effects associated with long-term occupational exposure of employees of a chlor-alkali plant to mercury. Int J Occup Saf Ergonom JOSE. 2012;18(1):97–106. doi: 10.1080/10803548.2012.11076920.CrossRefGoogle Scholar
  111. Norfray JF, Chiaradonna NL, Heiser WJ, Song SH, Manyam BV, Devleschoward AB, Eastwood LM. Brain iron in patients with Parkinson disease: MR visualization using gradient modification. AJNR Am J Neuroradiol. 1988;9(2):237–40.PubMedGoogle Scholar
  112. Okuda B, Iwamoto Y, Tachibana H, Sugita M. Parkinsonism after acute cadmium poisoning. Clin Neurol Neurosurg. 1997;99(4):263–5.PubMedCrossRefGoogle Scholar
  113. Oteiza PI, Mackenzie GG, Verstraeten SV. Metals in neurodegeneration: involvement of oxidants and oxidant-sensitive transcription factors. Mol Asp Med. 2004;25(1–2):103–15. doi: 10.1016/j.mam.2004.02.012.CrossRefGoogle Scholar
  114. Page KE, White KN, McCrohan CR, Killilea DW, Lithgow GJ. Aluminium exposure disrupts elemental homeostasis in Caenorhabditis elegans. Metallom Integr Biometal Sci. 2012;4(5):512–22. doi: 10.1039/c2mt00146b.CrossRefGoogle Scholar
  115. Pamphlett R, Kum Jew S. Uptake of inorganic mercury by human locus ceruleus and corticomotor neurons: implications for amyotrophic lateral sclerosis. Acta Neuropathol Commun. 2013;1:13. doi: 10.1186/2051-5960-1-13.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Parmalee NL, Maqbool SB, Ye B, Calder B, Bowman AB, Aschner M. n.d. RNASeq in C. elegans following manganese exposure. Curr Protocols Toxicol. 2015;65:11 20 11–17. doi: 10.1002/0471140856.tx1120s65.
  117. Petroni D, Tsai J, Agrawal K, Mondal D, George W. Low-dose methylmercury-induced oxidative stress, cytotoxicity, and tau-hyperphosphorylation in human neuroblastoma (SH-SY5Y) cells. Environ Toxicol. 2012;27(9):549–55. doi: 10.1002/tox.20672.PubMedCrossRefGoogle Scholar
  118. Pfefferbaum A, Adalsteinsson E, Rohlfing T, Sullivan EV. MRI estimates of brain iron concentration in normal aging: comparison of field-dependent (FDRI) and phase (SWI) methods. NeuroImage. 2009;47(2):493–500. doi: 10.1016/j.neuroimage.2009.05.006.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Poujois A, Devedjian JC, Moreau C, Devos D, Chaine P, Woimant F, Duce JA. Bioavailable trace metals in neurological diseases. Curr Treat Options Neurol. 2016;18(10):46. doi: 10.1007/s11940-016-0426-1.PubMedCrossRefGoogle Scholar
  120. Price DL. New order from neurological disorders. Nature. 1999;399(6738 Suppl):A3–5.PubMedCrossRefGoogle Scholar
  121. Rand JB. Acetylcholine. WormBook. 2007:1–21. doi: 10.1895/wormbook.1.131.1.
  122. Rigon AP, Cordova FM, Oliveira CS, Posser T, Costa AP, Silva IG, Santos DA, Rossi FM, Rocha JB, Leal RB. Neurotoxicity of cadmium on immature hippocampus and a neuroprotective role for p38 MAPK. Neurotoxicology. 2008;29(4):727–34. doi: 10.1016/j.neuro.2008.04.017.PubMedCrossRefGoogle Scholar
  123. Roh JY, Lee J, Choi J. Assessment of stress-related gene expression in the heavy metal-exposed nematode Caenorhabditis elegans: a potential biomarker for metal-induced toxicity monitoring and environmental risk assessment. Environ Toxicol Chem. 2006;25(11):2946–56.PubMedCrossRefGoogle Scholar
  124. Rosas HD, Chen YI, Doros G, Salat DH, Chen NK, Kwong KK, Bush A, Fox J, Hersch SM. Alterations in brain transition metals in Huntington disease: an evolving and intricate story. Arch Neurol. 2012;69(7):887–93. doi: 10.1001/archneurol.2011.2945.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Rudgalvyte M, Peltonen J, Lakso M, Nass R, Wong G. RNA-Seq reveals acute manganese exposure increases endoplasmic reticulum related and Lipocalin mRNAs in Caenorhabditis elegans. J Biochem Mol Toxicol. 2016;30(2):97–105. doi: 10.1002/jbt.21768.PubMedCrossRefGoogle Scholar
  126. Rui Q, Zhao Y, Wu Q, Tang M, Wang D. Biosafety assessment of titanium dioxide nanoparticles in acutely exposed nematode Caenorhabditis elegans with mutations of genes required for oxidative stress or stress response. Chemosphere. 2013;93(10):2289–96. doi: 10.1016/j.chemosphere.2013.08.007.PubMedCrossRefGoogle Scholar
  127. Sadiq S, Ghazala Z, Chowdhury A, Busselberg D. Metal toxicity at the synapse: presynaptic, postsynaptic, and long-term effects. J Toxicol. 2012;2012:132671. doi: 10.1155/2012/132671.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Salazar J, Mena N, Hunot S, Prigent A, Alvarez-Fischer D, Arredondo M, Duyckaerts C, Sazdovitch V, Zhao L, Garrick LM, Nunez MT, Garrick MD, Raisman-Vozari R, Hirsch EC. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci U S A. 2008;105(47):18578–83. doi: 10.1073/pnas.0804373105.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Sambongi Y, Nagae T, Liu Y, Yoshimizu T, Takeda K, Wada Y, Futai M. Sensing of cadmium and copper ions by externally exposed ADL, ASE, and ASH neurons elicits avoidance response in Caenorhabditis elegans. Neuroreport. 1999;10(4):753–7.PubMedCrossRefGoogle Scholar
  130. Sanfeliu C, Sebastia J, Cristofol R, Rodriguez-Farre E. Neurotoxicity of organomercurial compounds. Neurotox Res. 2003;5(4):283–305.PubMedCrossRefGoogle Scholar
  131. Santner A, Uversky VN. Metalloproteomics and metal toxicology of alpha-synuclein. Metall Integr Biometal Sci. 2010;2(6):378–92. doi: 10.1039/b926659c.CrossRefGoogle Scholar
  132. Sawin ER, Ranganathan R, Horvitz HR. C. elegans Locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron. 2000;26(3):619–31.PubMedCrossRefGoogle Scholar
  133. Scheiber IF, Mercer JF, Dringen R. Metabolism and functions of copper in brain. Prog Neurobiol. 2014;116:33–57. doi: 10.1016/j.pneurobio.2014.01.002.PubMedCrossRefGoogle Scholar
  134. Schipper HM. Neurodegeneration with brain iron accumulation - clinical syndromes and neuroimaging. Biochim Biophys Acta. 2012;1822(3):350–60. doi: 10.1016/j.bbadis.2011.06.016.PubMedCrossRefGoogle Scholar
  135. Settivari R, Levora J, Nass R. The divalent metal transporter homologues SMF-1/2 mediate dopamine neuron sensitivity in caenorhabditis elegans models of manganism and parkinson disease. J Biol Chem. 2009;284(51):35758–68. doi: 10.1074/jbc.M109.051409.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Sistrunk SC, Ross MK, Filipov NM. Direct effects of manganese compounds on dopamine and its metabolite Dopac: an in vitro study. Environ Toxicol Pharmacol. 2007;23(3):286–96. doi: 10.1016/j.etap.2006.11.004.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Subbiah R, Veerapandian M, Yun KS. Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr Med Chem. 2010;17(36):4559–77.PubMedCrossRefGoogle Scholar
  138. Sulston JE. Neuronal cell lineages in the nematode Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):443–52.PubMedCrossRefGoogle Scholar
  139. Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983;100(1):64–119.PubMedCrossRefGoogle Scholar
  140. Swain SC, Keusekotten K, Baumeister R, Sturzenbaum SR. C. elegans Metallothioneins: new insights into the phenotypic effects of cadmium toxicosis. J Mol Biol. 2004;341(4):951–9. doi: 10.1016/j.jmb.2004.06.050.PubMedCrossRefGoogle Scholar
  141. Takeda A. Manganese action in brain function. Brain Res Brain Res Rev. 2003;41(1):79–87.PubMedCrossRefGoogle Scholar
  142. Tamm C, Duckworth JK, Hermanson O, Ceccatelli S. Methylmercury inhibits differentiation of rat neural stem cells via Notch signalling. Neuroreport. 2008;19(3):339–43. doi: 10.1097/WNR.0b013e3282f50ca4.PubMedCrossRefGoogle Scholar
  143. Thanh NTK, Green LAW. Functionalisation of nanoparticles for biomedical applications. Nano Today. 2010;5:213–30. doi: 10.1016/j.nantod.2010.05.003.CrossRefGoogle Scholar
  144. Tiernan CT, Edwin EA, Hawong HY, Rios-Cabanillas M, Goudreau JL, Atchison WD, Lookingland KJ. Methylmercury impairs canonical dopamine metabolism in rat undifferentiated pheochromocytoma (PC12) cells by indirect inhibition of aldehyde dehydrogenase. Toxicological sciences : an official journal of the Society of Toxicology. 2015;144(2):347–56. doi: 10.1093/toxsci/kfv001.CrossRefGoogle Scholar
  145. Valentini S, Cabreiro F, Ackerman D, Alam MM, Kunze MB, Kay CW, Gems D. Manipulation of in vivo iron levels can alter resistance to oxidative stress without affecting ageing in the nematode C. elegans. Mech Ageing Dev. 2012;133(5):282–90. doi: 10.1016/j.mad.2012.03.003.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Vanduyn N, Settivari R, Wong G, Nass R. SKN-1/Nrf2 inhibits dopamine neuron degeneration in a Caenorhabditis elegans model of methylmercury toxicity. Toxicol Sci. 2010;118(2):613–24. doi: 10.1093/toxsci/kfq285.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Vanduyn N, Settivari R, Levora J, Zhou S, Unrine J, Nass R. The metal transporter SMF-3/DMT-1 mediates aluminum-induced dopamine neuron degeneration. J Neurochem. 2013;124(1):147–57. doi: 10.1111/jnc.12072.PubMedCrossRefGoogle Scholar
  148. Vatamaniuk OK, Bucher EA, Ward JT, Rea PA. A new pathway for heavy metal detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans. J Biol Chem. 2001;276(24):20817–20. doi: 10.1074/jbc.C100152200.PubMedCrossRefGoogle Scholar
  149. Verstraeten SV, Aimo L, Oteiza PI. Aluminium and lead: molecular mechanisms of brain toxicity. Arch Toxicol. 2008;82(11):789–802. doi: 10.1007/s00204-008-0345-3.PubMedCrossRefGoogle Scholar
  150. Villeda-Hernandez J, Barroso-Moguel R, Mendez-Armenta M, Nava-Ruiz C, Huerta-Romero R, Rios C. Enhanced brain regional lipid peroxidation in developing rats exposed to low level lead acetate. Brain Res Bull. 2001;55(2):247–51.PubMedCrossRefGoogle Scholar
  151. Waalkes MP. Cadmium carcinogenesis in review. J Inorg Biochem. 2000;79(1–4):241–4.PubMedCrossRefGoogle Scholar
  152. Walton JR. Aluminum involvement in the progression of Alzheimer’s disease. J Alzheimer’s Dis JAD. 2013;35(1):7–43. doi: 10.3233/JAD-121909.PubMedGoogle Scholar
  153. Wan L, Nie G, Zhang J, Luo Y, Zhang P, Zhang Z, Zhao B. Beta-amyloid peptide increases levels of iron content and oxidative stress in human cell and Caenorhabditis elegans models of Alzheimer disease. Free Radic Biol Med. 2011;50(1):122–9. doi: 10.1016/j.freeradbiomed.2010.10.707.PubMedCrossRefGoogle Scholar
  154. Wang B, Du Y. Cadmium and its neurotoxic effects. Oxidative Med Cell Longev. 2013;2013:898034. doi: 10.1155/2013/898034.Google Scholar
  155. Wang D, Xing X. Assessment of locomotion behavioral defects induced by acute toxicity from heavy metal exposure in nematode Caenorhabditis elegans. J Environ Sci. 2008;20(9):1132–7.CrossRefGoogle Scholar
  156. Wang D, Shen L, Wang Y. The phenotypic and behavioral defects can be transferred from zinc-exposed nematodes to their progeny. Environ Toxicol Pharmacol. 2007;24(3):223–30. doi: 10.1016/j.etap.2007.05.009.PubMedCrossRefGoogle Scholar
  157. Wang W, Xu ZJ, Wu YQ, Qin LW, Li ZY, Wu ZX. Off-response in ASH neurons evoked by CuSO4 requires the TRP channel OSM-9 in Caenorhabditis elegans. Biochem Biophys Res Commun. 2015;461(3):463–8. doi: 10.1016/j.bbrc.2015.04.017.PubMedCrossRefGoogle Scholar
  158. Wei X, Qi Y, Zhang X, Gu X, Cai H, Yang J, Zhang Y. ROS act as an upstream signal to mediate cadmium-induced mitophagy in mouse brain. Neurotoxicology. 2015;46:19–24. doi: 10.1016/j.neuro.2014.11.007.PubMedCrossRefGoogle Scholar
  159. White JG, Southgate E, Thomson JN, Brenner S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond Ser B Biol Sci. 1986;314(1165):1–340.CrossRefGoogle Scholar
  160. White AR, Multhaup G, Galatis D, McKinstry WJ, Parker MW, Pipkorn R, Beyreuther K, Masters CL, Cappai R. Contrasting, species-dependent modulation of copper-mediated neurotoxicity by the Alzheimer’s disease amyloid precursor protein. J Neurosci. 2002;22(2):365–76.PubMedGoogle Scholar
  161. WHO. Guidelines for drinking-water quality in health criteria and other supporting information, vol. 2. Geneva: WHO; 1996.Google Scholar
  162. Williams PL, Dusenbery DB. A promising indicator of neurobehavioral toxicity using the nematode Caenorhabditis elegans and computer tracking. Toxicol Ind Health. 1990;6(3–4):425–40.PubMedCrossRefGoogle Scholar
  163. Wright RO, Baccarelli A. Metals and neurotoxicology. J Nutr. 2007;137(12):2809–13.PubMedGoogle Scholar
  164. Wu J, Basha MR, Brock B, Cox DP, Cardozo-Pelaez F, McPherson CA, Harry J, Rice DC, Maloney B, Chen D, Lahiri DK, Zawia NH. Alzheimer’s disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. J Neurosci. 2008;28(1):3–9. doi: 10.1523/JNEUROSCI.4405-07.2008.PubMedPubMedCentralCrossRefGoogle Scholar
  165. Wu Q, Li Y, Tang M, Wang D. Evaluation of environmental safety concentrations of DMSA coated Fe2O3-NPs using different assay systems in nematode Caenorhabditis elegans. PLoS One. 2012;7(8):e43729. doi: 10.1371/journal.pone.0043729.PubMedPubMedCentralCrossRefGoogle Scholar
  166. Wu Q, Nouara A, Li Y, Zhang M, Wang W, Tang M, Ye B, Ding J, Wang D. Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans. Chemosphere. 2013;90(3):1123–31. doi: 10.1016/j.chemosphere.2012.09.019.PubMedCrossRefGoogle Scholar
  167. Wu Q, Zhao Y, Li Y, Wang D. Susceptible genes regulate the adverse effects of TiO2-NPs at predicted environmental relevant concentrations on nematode Caenorhabditis elegans. Nanomed Nanotechnol Biol Med. 2014;10(6):1263–71. doi: 10.1016/j.nano.2014.03.010.CrossRefGoogle Scholar
  168. Wu T, He K, Zhan Q, Ang S, Ying J, Zhang S, Zhang T, Xue Y, Tang M. MPA-capped CdTe quantum dots exposure causes neurotoxic effects in nematode Caenorhabditis elegans by affecting the transporters and receptors of glutamate, serotonin and dopamine at the genetic level, or by increasing ROS, or both. Nanoscale. 2015;7(48):20460–73. doi: 10.1039/c5nr05914c.PubMedCrossRefGoogle Scholar
  169. Xing XJ, Rui Q, Du M, Wang DY. Exposure to lead and mercury in young larvae induces more severe deficits in neuronal survival and synaptic function than in adult nematodes. Arch Environ Contam Toxicol. 2009;56(4):732–41. doi: 10.1007/s00244-009-9307-x.PubMedCrossRefGoogle Scholar
  170. Ye H, Ye B, Wang D. Trace administration of vitamin E can retrieve and prevent UV-irradiation- and metal exposure-induced memory deficits in nematode Caenorhabditis elegans. Neurobiol Learn Mem. 2008;90(1):10–8. doi: 10.1016/j.nlm.2007.12.001.PubMedCrossRefGoogle Scholar
  171. Ye B, Rui Q, Wu Q, Wang D. Metallothioneins are required for formation of cross-adaptation response to neurobehavioral toxicity from lead and mercury exposure in nematodes. PLoS One. 2010;5(11):e14052. doi: 10.1371/journal.pone.0014052.PubMedPubMedCentralCrossRefGoogle Scholar
  172. Yokel RA, Rhineheimer SS, Sharma P, Elmore D, McNamara PJ. Entry, half-life, and desferrioxamine-accelerated clearance of brain aluminum after a single (26)al exposure. Toxicol Sci. 2001;64(1):77–82.PubMedCrossRefGoogle Scholar
  173. Zeitoun-Ghandour S, Charnock JM, Hodson ME, Leszczyszyn OI, Blindauer CA, Sturzenbaum SR. The two Caenorhabditis elegans metallothioneins (CeMT-1 and CeMT-2) discriminate between essential zinc and toxic cadmium. FEBS J. 2010;277(11):2531–42. doi: 10.1111/j.1742-4658.2010.07667.x.PubMedCrossRefGoogle Scholar
  174. Zhang Y, Ye B, Wang D. Effects of metal exposure on associative learning behavior in nematode Caenorhabditis elegans. Arch Environ Contam Toxicol. 2010;59(1):129–36. doi: 10.1007/s00244-009-9456-y.PubMedCrossRefGoogle Scholar
  175. Zhao Y, Wu Q, Tang M, Wang D. The in vivo underlying mechanism for recovery response formation in nano-titanium dioxide exposed Caenorhabditis elegans after transfer to the normal condition. Nanomed Nanotechnol Biol Med. 2014;10(1):89–98. doi: 10.1016/j.nano.2013.07.004.CrossRefGoogle Scholar
  176. Zhao Y, Wang X, Wu Q, Li Y, Wang D. Translocation and neurotoxicity of CdTe quantum dots in RMEs motor neurons in nematode Caenorhabditis elegans. J Hazard Mater. 2015;283:480–9. doi: 10.1016/j.jhazmat.2014.09.063.PubMedCrossRefGoogle Scholar
  177. Zhu W, Xie W, Pan T, Xu P, Fridkin M, Zheng H, Jankovic J, Youdim MB, Le W. Prevention and restoration of lactacystin-induced nigrostriatal dopamine neuron degeneration by novel brain-permeable iron chelators. FASEB J. 2007;21(14):3835–44. doi: 10.1096/fj.07-8386com.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Departamento de Bioquimica e Biologia MolecularUniversidade Federal de Santa MariaSanta MariaBrazil
  2. 2.Universidade Federal do PampaUruguaianaBrazil

Personalised recommendations