Thallium Toxicity: General Issues, Neurological Symptoms, and Neurotoxic Mechanisms

  • Laura Osorio-Rico
  • Abel Santamaria
  • Sonia Galván-ArzateEmail author
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 18)


Thallium (Tl+) is a ubiquitous natural trace metal considered as the most toxic among heavy metals. The ionic ratio of Tl+ is similar to that of potassium (K+), therefore accounting for the replacement of the latter during enzymatic reactions. The principal organelle damaged after Tl+ exposure is mitochondria. Studies on the mechanisms of Tl+ include intrinsic pathways altered and changes in antiapoptotic and proapoptotic proteins, cytochrome c, and caspases. Oxidative damage pathways increase after Tl+ exposure to produce reactive oxygen species (ROS), changes in physical properties of the cell membrane caused by lipid peroxidation, and concomitant activation of antioxidant mechanisms. These processes are likely to account for the neurotoxic effects of the metal. In humans, Tl+ is absorbed through the skin and mucous membranes and then is widely distributed throughout the body to be accumulated in bones, renal medulla, liver, and the Central Nervous System. Given the growing relevance of Tl+ intoxication, in recent years there is a notorious increase in the number of reports attending Tl+ pollution in different countries. In this sense, the neurological symptoms produced by Tl+ and its neurotoxic effects are gaining attention as they represent a serious health problem all over the world. Through this review, we present an update to general information about Tl+ toxicity, making emphasis on some recent data about Tl+ neurotoxicity, as a field requiring attention at the clinical and preclinical levels.


Thallium Pollution Metal Human health Neurotoxicity 


Disclosure of Conflict of Interest

Authors declare no conflict of interest.


  1. Afshari R, Mégarbane B, Zavar A. Thallium poisoning: one additional and unexpected risk of heroin abuse. Clinical Toxicol. (Phila) 2012;50:791–2.Google Scholar
  2. Alves RI, Sampaio CF, Nadal M, Schumacher M, Domingo JL, Segura-Muñoz SY. Metal concentrations in surface water and sediments from Pardo River, Brazil: human health risks. Environ Res. 2014;133:149–55.Google Scholar
  3. Appenroth D, Winnefeld K. Is thallium-induced nephrotoxicity in rats connected with riboflavin and/or GSH?-reconsideration of hypotheses on the mechanism of thallium toxicity. J Appl Toxicol. 1999;19:61–6.CrossRefPubMedGoogle Scholar
  4. Bragadin M, Toninello A, Bindoli A, Rigobello MP, Canton M. Thallium induces apoptosis in Jurkat cells. Ann N Y Acad Sci. 2003;1010:283–91.CrossRefPubMedGoogle Scholar
  5. Chia CF, Chen SC, Chen CS, Shih CM, Lee HM, Wu CH. Thallium acetate induces C6 glioma cell apoptosis. Ann N Y Acad Sci. 2005;1042:523–30.CrossRefPubMedGoogle Scholar
  6. del Carmen Puga Molina L, Verstraeten SV. Thallium (III)-mediated changes in membrane physical properties and lipid oxidation affect cardiolipin-cytochrome c interactions. Biochim Biophys Acta. 2008;1778:2157–64.CrossRefPubMedGoogle Scholar
  7. Eskandari MR, Mashayekhi V, Aslani M, Hosseini MJ. Toxicity of thallium on isolated rat liver mitochondria: the role of oxidative stress and MPT pore opening. Environ Toxicol. 2015;30:232–41.CrossRefPubMedGoogle Scholar
  8. Galván-Arzate S, Santamaría A. Thallium toxicity. Toxicol Lett. 1998;99:1–13.CrossRefPubMedGoogle Scholar
  9. Galván-Arzate S, Martínez A, Medina E, Santamaría A, Ríos C. Subchronic administration of sublethal doses of thallium to rats: effects on distribution and lipid peroxidation in brain regions. Toxicol Lett. 2000;116(1–2):37–43.CrossRefPubMedGoogle Scholar
  10. Galván-Arzate S, Pedraza-Chaverri J, Medina-Campos ON, Maldonado PD, Vázquez-Román B, Ríos C, Santamaria A. Delayed effects of thallium in the rat brain: regional changes in lipid peroxidation and behavioral markers, but moderate alterations in antioxidants, after a single administration. Food Chem Toxicol. 2005;43:1037–45.Google Scholar
  11. Ghaderi A, Vahdati-Mashhadian N, Oghabian Z, Moradi V, Afshari R, Mehrpour O. Thallium exists in opioid poisoned patients. DARU 2015;23:39–42.Google Scholar
  12. Gómez-González MA, García-Guinea J, Laborda F, Garrido F. Thallium occurrence and partitioning in soils and sediments affected by mining activities in Madrid Province (Spain). Sci Total Environ. 2015;536:268–78.CrossRefPubMedGoogle Scholar
  13. Govarts E, Remy S, Bruckers L, Den Hond E, Sioen I, Nelen V, Baeyens W, Nawrot T, Loots I, Van Larebeke N, Schoeters G. Combined effects of prenatal exposures to environmental chemicals on birth weight. Int J Environ Res Public Health. 2016;13:495.Google Scholar
  14. Hanzel CE, Villaverde MS, Verstraeten SV. Glutathione metabolism is impaired in vitro by thallium (III) hydroxide. Toxicology. 2005;207:501–10.Google Scholar
  15. Hanzel C, Verstraeten S. Tl (I) and Tl (III) activate both mitochondrial and extrinsic pathways of apoptosis in rat pheochromocytoma (PC12) cells. Toxicol Appl Pharmacol. 2009;236:59–70.Google Scholar
  16. Hoffman RS. Thallium toxicity and the role of Prussian blue in therapy. Toxicol Rev. 2003;22:29–40.CrossRefPubMedGoogle Scholar
  17. Huang C, Zhang X, Li G, Jiang Y, Wang Q, Tian R. A case of severe thallium poisoning successfully treated with hemoperfusion and continuous veno-venous hemofiltration. Hum Exp Toxicol. 2014;33:554–8.CrossRefPubMedGoogle Scholar
  18. Korotkov SM. Effects of Tl+ on ion permeability, membrane potential and respiration of isolated rat liver mitochondria. J Bioenerg Biomembr. 2009;41:277–87.CrossRefPubMedGoogle Scholar
  19. Korotkov SM, Emel’yanova LV, Yagodina OV. Inorganic phosphate stimulates the toxic effects of Tl+ in rat liver mitochondria. J Biochem Mol Toxicol. 2008;22:148–57.CrossRefPubMedGoogle Scholar
  20. Leung KM, Ooi VE. Studies on thallium toxicity, its tissue distribution and histopathological effects in rats. Chemosphere. 2000;41:155–9.Google Scholar
  21. Li S, Xiao T, Zheng B. Medical geology of arsenic, selenium and thallium in China. Sci Total Environ. 2012;421-422:31–40.Google Scholar
  22. Loula M, Kaña A, Vosmanská M, Koplík R, Mestek O. Transfer of thallium from rape seed to rape oil is negligible and oil is fit for human consumption. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2016;33:668–73.PubMedGoogle Scholar
  23. Malandrino P, Russo M, Ronchi A, Minoia C, Cataldo D, Regalbuto C, Giordano C, Attard M, Squatrito S, Trimarchi F, Vigneri R. Increased thyroid cancer incidence in basaltic volcanic area is associated with non-anthropogenic pollution and bicontamination. Endocrine. 2016;53:471–9.Google Scholar
  24. Osorio-Rico L, Villeda-Hernández J, Santamaría A, Königsberg M, Galván-Arzate S. The N-methyl-D-aspartate receptor antagonist MK-801 prevents thallium-induced behavioral and biochemical alterations in the rat brain. Int J Toxicol. 2015;34:505–13.CrossRefPubMedGoogle Scholar
  25. Peter AL, Viraraghavan T. Thallium: a review of public health and environmental concerns. Environ Int. 2005;31:493–501.Google Scholar
  26. Ponton DE, Caron A, Hare L, Campbell PG. Hepatic oxidative stress and metal subcellular partitioning are affected by selenium exposure in wild yellow perch (Perca flavescens). Environ Pollut. 2016;214:608–17.CrossRefPubMedGoogle Scholar
  27. Ríos C, Galván-Arzate S, Tapia R. Brain regional thallium distribution in rats acutely intoxicated with Tl2SO4. Arch Toxicol. 1989;63(1):34–7.CrossRefPubMedGoogle Scholar
  28. Rodríguez-Mercado JJ, Altamirano-Lozano MA. 2013. Genetic toxicology of thallium: a review. Drug Chem Toxicol. 2013;36:369–83.CrossRefPubMedGoogle Scholar
  29. Saddique A, Peterson CD. Thallium poisoning: a review. Vet Hum Toxicol. 1983;25:16–22.PubMedGoogle Scholar
  30. Sánchez-Chardi A. Tissue, age, and sex distribution of thallium in shrews from Doñana, a protected area in SW Spain. Sci Total Environ. 2007;383:237–40.CrossRefPubMedGoogle Scholar
  31. Tsai YT, Huang CC, Kuo HC, Wang HM, Shen WS, Shih TS, Chu NS. Central nervous system effects in acute thallium poisoning. Neurotoxicology. 2006;27:291–5.CrossRefPubMedGoogle Scholar
  32. Turner A, Turner D, Braungardt C. Biomonitoring of thallium availability in two estuaries of southwest England. Mar Pollut Bull. 2013;69:172–7.CrossRefPubMedGoogle Scholar
  33. Wanger T, Scheich H, Ohl FW, Goldschmidt J. The use of thallium diethyldithiocarbamate for mapping CNS potassium metabolism and neuronal activity: Tl+-redistribution, Tl+-kinetics and Tl+-equilibrium distribution. J Neurochem. 2012;122:106–14.CrossRefPubMedGoogle Scholar
  34. Woods JS, Fowler BA, Eaton DL. Studies on the mechanisms of thallium-mediated inhibition of hepatic mixed function oxidase activity. Correlation with inhibition of NADPH-cytochrome c (P-450) reductase. Biochem Pharmacol. 1984;33:571–6.CrossRefPubMedGoogle Scholar
  35. Xiao T, Yang F, Li S, Zheng B, Ning Z. Thallium pollution in China: a geo-environmental perspective. Sci Total Environ. 2012;1:51–8.CrossRefGoogle Scholar
  36. Zhuang W, Gao X. Distribution, enrichment and sources of thallium in the surface sediments of the southwestern coastal Laizhou Bay, Bohai Sea. Mar Pollut Bull. 2015;96:502–7.CrossRefPubMedGoogle Scholar
  37. Zitko V. Toxicity and pollution potential of thallium. Sci. Total Environ. 1975;4:185–92.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Laura Osorio-Rico
    • 1
  • Abel Santamaria
    • 2
  • Sonia Galván-Arzate
    • 1
    Email author
  1. 1.Departamento de NeuroquímicaInstituto Nacional de Neurología y NeurocirugíaMexico CityMexico
  2. 2.Laboratorio de Aminoácidos ExcitadoresInstituto Nacional de Neurología y NeurocirugíaMexico CityMexico

Personalised recommendations