Advertisement

Neurotoxicity of Zinc

  • Deborah R. Morris
  • Cathy W. LevensonEmail author
Chapter
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 18)

Abstract

Zinc-induced neurotoxicity has been shown to play a role in neuronal damage and death associated with traumatic brain injury, stroke, seizures, and neurodegenerative diseases. During normal firing of “zinc-ergic” neurons, vesicular free zinc is released into the synaptic cleft where it modulates a number of postsynaptic neuronal receptors. However, excess zinc, released after injury or disease, leads to excitotoxic neuronal death. The mechanisms of zinc-mediated neurotoxicity appear to include not only neuronal signaling but also regulation of mitochondrial function and energy production, as well as other mechanisms such as aggregation of amyloid beta peptides in Alzheimer’s disease. However, recent data have raised questions about some of our long-standing assumptions about the mechanisms of zinc in neurotoxicity. Thus, this review explores the most recent published findings and highlights the current mechanistic controversies.

Keywords

Zinc Abeta Excitotoxicity Neurotoxicity 

References

  1. Abelein A, Gräslund A, Danielsson J. Zinc as chaperone-mimicking agent for retardation of amyloid β peptide fibril formation. Proc Natl Acad Sci U S A. 2015;112:5407–12.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abramovitch-Dahan C, Asraf H, Bogdanovic M et al. Amyloid β attenuates metabotropic zinc sensing receptor, mZnR/GPR39, dependent Ca2+ , ERK1/2 and Clusterin signaling in neurons. J Neurochem. 2016. doi: 10.1111/jnc.13760.
  3. Anderson CT, Radford RJ, Zastrow ML, et al. Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc. Proc Natl Acad Sci U S A. 2015;112:E2705–14.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bellou V, Belbasis L, Tzoulaki I, et al. Systematic evaluation of the associations between environmental risk factors and dementia: an umbrella review of systematic reviews and meta-analyses. Alzheimers Dement pii. 2016;S1552-5260(16):32853–9.Google Scholar
  5. Bush AI. The metal theory of Alzheimer’s disease. J Alzheimers Dis. 2013;33(Suppl 1):S277–81.PubMedGoogle Scholar
  6. Cai AL, Zipfel GJ, Sheline CT. Zinc neurotoxicity is dependent on intracellular NAD levels and the sirtuin pathway. Eur J Neurosci. 2006;24:2169–76.CrossRefPubMedGoogle Scholar
  7. Cope EC, Morris DR, Scrimgeour AG, et al. Zinc supplementation provides behavioral resiliency in a rat model of traumatic brain injury. Physiol Behav. 2011;104:942–7.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cope EC, Morris DR, Gower-Winter SD, et al. Effect of zinc supplementation on neuronal precursor proliferation in the rat hippocampus after traumatic brain injury. Exp Neurol. 2016;279:96–103.CrossRefPubMedGoogle Scholar
  9. Corona C, Pensalfini A, Frazzini V, et al. New therapeutic targets in Alzheimer’s disease: brain deregulation of calcium and zinc. Cell Death Dis. 2011;2:e176.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dineley KE, Votyakova TV, Reynolds IJ. Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration. J Neurochem. 2003;85:563–70.CrossRefPubMedGoogle Scholar
  11. Eom JW, Lee JM, Koh JY, et al. AMP-activated protein kinase contributes to zinc-induced neuronal death via activation by LKB1 and induction of Bim in mouse cortical cultures. Mol Brain. 2016;9:14.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Floriańczyk B, Trojanowski T. Inhibition of respiratory processes by overabundance of zinc in neuronal cells. Folia Neuropathol. 2009;47:234–9.PubMedGoogle Scholar
  13. Garai K, Sahoo B, Kaushalya SK, et al. Zinc lowers amyloid-beta toxicity by selectively precipitating aggregation intermediates. Biochemistry. 2007;46:10655–63.CrossRefPubMedGoogle Scholar
  14. Granzotto A, Sensi SL. Intracellular zinc is a critical intermediate in the excitotoxic cascade. Neurobiol Dis. 2015;81:25–37.CrossRefPubMedGoogle Scholar
  15. Greenough MA, Camakaris J, Bush AI. Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochem Int. 2013;62:540–55.CrossRefPubMedGoogle Scholar
  16. Hancock SM, Finkelstein DI, Adlard PA. Glia and zinc in ageing and Alzheimer’s disease: a mechanism for cognitive decline? Front Aging Neurosci. 2014;6:137.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hane FT, Hayes R, Lee BY, et al. Effect of copper and zinc on the single molecule self-affinity of Alzheimer’s amyloid-β peptides. PLoS One. 2016;11:e0147488.CrossRefPubMedPubMedCentralGoogle Scholar
  18. He K, Aizenman E. ERK signaling leads to mitochondrial dysfunction in extracellular zinc-induced neurotoxicity. J Neurochem. 2010;114:452–61.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hosie AM, Dunne EL, Harvey RJ, et al. Zinc-mediated inhibition of GABA(a) receptors: discrete binding sites underlie subtype specificity. Nat Neurosci. 2003;6:362–9.CrossRefPubMedGoogle Scholar
  20. Inoue K, O’Bryant Z, Xiong ZG. Zinc-permeable ion channels: effects on intracellular zinc dynamics and potential physiological/pathophysiological significance. Curr Med Chem. 2015;22:1248–57.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Istrate AN, Kozin SA, Zhokhov SS, et al. Interplay of histidine residues of the Alzheimer’s disease Aβ peptide governs its Zn-induced oligomerization. Sci Rep. 2016;6:21734.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Khan MZ. A possible significant role of zinc and GPR39 zinc sensing receptor in Alzheimer disease and epilepsy. Biomed Pharmacother. 2016;79:263–72.CrossRefPubMedGoogle Scholar
  23. Khmeleva SA, Radko SP, Kozin SA, et al. Zinc-mediated binding of nucleic acids to amyloid-β aggregates: role of histidine residues. J Alzheimers Dis. 2016;54:809–19.CrossRefPubMedGoogle Scholar
  24. Kim SW, Lee HK, Kim HJ, et al. Neuroprotective effect of ethyl pyruvate against Zn(2+) toxicity via NAD replenishment and direct Zn(2+) chelation. Neuropharmacology. 2016a;105:411–9.CrossRefPubMedGoogle Scholar
  25. Kim Y, Oh HG, Cho YY, et al. Stress hormone potentiates Zn(2+)-induced neurotoxicity via TRPM7 channel in dopaminergic neuron. Biochem Biophys Res Commun. 2016b;470:362–7.CrossRefPubMedGoogle Scholar
  26. Klein HU, Bennett DA, De Jager PL. The epigenome in Alzheimer’s disease: current state and approaches for a new path to gene discovery and understanding disease mechanism. Acta Neuropathol. 2016;132:503–14.CrossRefPubMedGoogle Scholar
  27. Kuenzel K, Friedrich O, Gilbert DF. A recombinant human pluripotent stem cell line stably expressing halide-sensitive YFP-I152L for GABAAR and GlyR-targeted high-throughput drug screening and toxicity testing. Front Mol Neurosci. 2016;9:51.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Leng TD, Lin J, Sun HW, et al. Local anesthetic lidocaine inhibits TRPM7 current and TRPM7-mediated zinc toxicity. CNS Neurosci Ther. 2015;21:32–9.CrossRefPubMedGoogle Scholar
  29. Lovelle MA, Robertson JD, Teesdale WJ, et al. Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol Sci. 1998;158:47–52.CrossRefGoogle Scholar
  30. Matheou CJ, Younan ND, Viles JH. The rapid exchange of zinc(2+) enables trace levels to profoundly influence amyloid-β Misfolding and dominates assembly outcomes in cu(2+)/Zn(2+) mixtures. J Mol Biol. 2016;428:2832–46.CrossRefPubMedGoogle Scholar
  31. Mezentsev YV, Medvedev AE, Kechko OI, et al. Zinc-induced heterodimer formation between metal-binding domains of intact and naturally modified amyloid-beta species: implication to amyloid seeding in Alzheimer’s disease? J Biomol Struct Dyn. 2016;21:1–10.Google Scholar
  32. Morris DR, Levenson CW. Ion channels and zinc: mechanisms of neurotoxicity and neurodegeneration. J Toxicol. 2012;2012:785647.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Panahpour H, Nekooeian AA, Dehghani GA. Blockade of central angiotensin II AT1 receptor protects the brain from ischemia/reperfusion injury in normotensive rats. Iran J Med Sci. 2014;39:536–42.PubMedPubMedCentralGoogle Scholar
  34. Park MH, Kim HN, Lim JS, et al. Angiotensin II potentiates zinc-induced cortical neuronal death by acting on angiotensin II type 2 receptor. Mol Brain. 2013;6:50.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pivovarova NB, Stanika RI, Kazanina G, et al. The interactive roles of zinc and calcium in mitochondrial dysfunction and neurodegeneration. J Neurochem. 2014;128:592–602.CrossRefPubMedGoogle Scholar
  36. Poddar R, Rajagopal S, Shuttleworth CW, et al. Zn2+−dependent activation of the Trk signaling pathway induces phosphorylation of the brain-enriched tyrosine phosphatase STEP: MOLECULAR BASIS FOR ZN2+−INDUCED ERK MAPK ACTIVATION. J Biol Chem. 2016;291:813–25.CrossRefPubMedGoogle Scholar
  37. Sensi S. Metal homeostasis in dementia. Free Radic Biol Med. 2014;75(Suppl 1):S9.Google Scholar
  38. Seo BR, Lee SJ, Cho KS, et al. The zinc ionophore clioquinol reverses autophagy arrest in chloroquine-treated ARPE-19 cells and in APP/mutant presenilin-1-transfected Chinese hamster ovary cells. Neurobiol Aging. 2015;36:3228–38.CrossRefPubMedGoogle Scholar
  39. Serraz B, Grand T, Paoletti P. Altered zinc sensitivity of NMDA receptors harboring clinically-relevant mutations. Neuropharmacology. 2016;109:196–204.CrossRefPubMedGoogle Scholar
  40. Sharma AK, Pavlova ST, Kim J, et al. The effect of cu(2+) and Zn(2+) on the Aβ42 peptide aggregation and cellular toxicity. Metallomics. 2013;5:1529–36.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sheline CT, Cai AL, Zhu J, et al. Serum or target deprivation-induced neuronal death causes oxidative neuronal accumulation of Zn2+ and loss of NAD+. Eur J Neurosci. 2010;32:894–904.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Shi H, Wang HL, Pu HJ, et al. Ethyl pyruvate protects against blood-brain barrier damage and improves long-term neurological outcomes in a rat model of traumatic brain injury. CNS Neurosci Ther. 2015;21:374–84.CrossRefPubMedGoogle Scholar
  43. Smart TG, Moss SJ, Xie X, et al. GABAA receptors are differentially sensitive to zinc: dependence on subunit composition. Br J Pharmacol. 1991;103:1837–9.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Takeda A, Tamano H. Innervation from the entorhinal cortex to the dentate gyrus and the vulnerability to Zn2. J trace Elem med Biol 2016. pii:S0946-672X(16)30076-1.Google Scholar
  45. Turkmen S, Cekic Gonenc O, Karaca Y, et al. The effect of ethyl pyruvate and N-acetylcysteine on ischemia-reperfusion injury in an experimental model of ischemic stroke. Am J Emerg Med. 2016;34:1804–7.CrossRefPubMedGoogle Scholar
  46. Uchoa MF, Moser VA, Pike CJ. Interactions between inflammation, sex steroids, and Alzheimer’s disease risk factors. Front Neuroendocrinol pii. 2016;S0091-3022(16):30039–5.Google Scholar
  47. Villapol S, Balarezo MG, Affram K, et al. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage. Brain. 2015;138:3299–315.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Wang G, Yu X, Wang D, et al. Altered levels of zinc and N-methyl-D-aspartic acid receptor underlying multiple organ dysfunctions after severe trauma. Med Sci Monit. 2015;21:2613–20.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Xu L, Shan S, Chen Y, et al. Coupling of zinc-binding and secondary structure in Nonfibrillar Aβ40 peptide Oligomerization. J Chem Inf Model. 2015;55:1218–30.CrossRefPubMedGoogle Scholar
  50. Young B, Ott L, Kasarskis E, et al. Zinc supplementation is associated with improved neurologic recovery rate and visceral protein levels of patients with severe closed head injury. J Neurotrauma. 1996;13:25–34.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Biomedical SciencesThe Florida State University College of MedicineTallahasseeUSA
  2. 2.Program in NeuroscienceThe Florida State University College of MedicineTallahasseeUSA

Personalised recommendations