Advertisement

Neurotoxicity of Vanadium

  • Hilary Afeseh Ngwa
  • Muhammet Ay
  • Huajun Jin
  • Vellareddy Anantharam
  • Arthi Kanthasamy
  • Anumantha G. KanthasamyEmail author
Chapter
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 18)

Abstract

Vanadium (V) is a transition metal that presents in multiple oxidation states and numerous inorganic compounds and is also an ultra-trace element considered to be essential for most living organisms. Despite being one of the lightest metals, V offers high structural strength and good corrosion resistance and thus has been widely adopted for high-strength steel manufacturing. High doses of V exposure are toxic, and inhalation exposure to V adversely affects the respiratory system. The neurotoxicological properties of V are just beginning to be identified. Recent studies by our group and others demonstrate the neurotoxic potential of this metal in the nigrostriatal system and other parts of the central nervous system (CNS). The neurotoxic effects of V have been mainly attributed to its ability to induce the generation of reactive oxygen species (ROS). It is noteworthy that the neurotoxicity induced by occupational V exposure commonly occurs with co-exposure to other metals, especially manganese (Mn). This review focuses on the chemistry, pharmacology, toxicology, and neurotoxicity of V.

Keywords

Vanadium Neurotoxicity Metals Oxidative stress Toxicology Neurodegeneration Parkinson’s disease 

Notes

Acknowledgment

This chapter was supported by National Institutes of Health Grants ES10586 and ES26892. The W. Eugene and Linda Lloyd Endowed Chair for AGK is also acknowledged. We thank Gary Zenitsky for assistance in preparing this chapter.

References

  1. Afeseh Ngwa H, Kanthasamy A, Anantharam V, Song C, Witte T, Houk R, Kanthasamy AG. Vanadium induces dopaminergic neurotoxicity via protein kinase Cdelta dependent oxidative signaling mechanisms: relevance to etiopathogenesis of Parkinson’s disease. Toxicol Appl Pharmacol. 2009;240(2):273–85.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Altamirano-Lozano M, Alvarez-Barrera L, Basurto-Alcantara F, Valverde M, Rojas E. Reprotoxic and genotoxic studies of vanadium pentoxide in male mice. Teratog Carcinog Mutagen. 1996;16(1):7–17.CrossRefPubMedGoogle Scholar
  3. Antonini JM, Murthy GGK, Rogers RA, Albert R, Ulrich GD, Brain JD. Pneumotoxicity and pulmonary clearance of different welding fumes after Intratracheal instillation in the rat. Toxicol Appl Pharmacol. 1996;140(1):188–99.CrossRefPubMedGoogle Scholar
  4. Antonini JM, Roberts JR, Stone S, Chen BT, Schwegler-Berry D, Frazer DG. Short-term inhalation exposure to mild steel welding fume had no effect on lung inflammation and injury but did alter defense responses to bacteria in rats. Inhal Toxicol. 2009a;21(3):182–92.CrossRefPubMedGoogle Scholar
  5. Antonini JM, Sriram K, Benkovic SA, Roberts JR, Stone S, Chen BT, Schwegler-Berry D, Jefferson AM, Billig BK, Felton CM, Hammer MA, Ma F, Frazer DG, O’Callaghan JP, Miller DB. Mild steel welding fume causes manganese accumulation and subtle neuroinflammatory changes but not overt neuronal damage in discrete brain regions of rats after short-term inhalation exposure. Neurotoxicology. 2009b;30(6):915–25.CrossRefPubMedGoogle Scholar
  6. Avila-Costa MR, Flores EM, Colin-Barenque L, Ordoñez JL, Gutiérrez AL, Niño-Cabrera HG, Mussali-Galante P, Fortoul TI. Nigrostriatal modifications after vanadium inhalation: an Immunocytochemical and cytological approach. Neurochem Res. 2004;29(7):1365–9.CrossRefPubMedGoogle Scholar
  7. Avila-Costa MR, Fortoul TI, Niño-Cabrera G, Colín-Barenque L, Bizarro-Nevares P, Gutiérrez-Valdez AL, Ordóñez-Librado JL, Rodríguez-Lara V, Mussali-Galante P, Díaz-Bech P, Anaya-Martínez V. Hippocampal cell alterations induced by the inhalation of vanadium pentoxide (V2O5) promote memory deterioration. Neurotoxicology. 2006;27(6):1007–12.CrossRefPubMedGoogle Scholar
  8. Azeez IA, Olopade F, Laperchia C, Andrioli A, Scambi I, Onwuka SK, Bentivoglio M, Olopade JO. Regional myelin and axon damage and Neuroinflammation in the adult mouse brain after long-term postnatal vanadium exposure. J Neuropathol Exp Neurol. 2016;75(9):843–54.CrossRefPubMedGoogle Scholar
  9. Badmaev V, Prakash S, Majeed M. Vanadium: a review of its potential role in the fight against diabetes. J Altern Complement Med. 1999;5(3):273–91.CrossRefPubMedGoogle Scholar
  10. Barbeau B, Bernier R, Dumais N, Briand G, Olivier M, Faure R, Posner BI, Tremblay M. Activation of HIV-1 long terminal repeat transcription and virus replication via NF-kappaB-dependent and -independent pathways by potent phosphotyrosine phosphatase inhibitors, the peroxovanadium compounds. J Biol Chem. 1997;272(20):12968–77.CrossRefPubMedGoogle Scholar
  11. Barth A, Schaffer AW, Konnaris C, Blauensteiner R, Winker R, Osterode W, Rudiger HW. Neurobehavioral effects of vanadium. J Toxicol Environ Health A. 2002;65(9):677–83.CrossRefPubMedGoogle Scholar
  12. Bergareche A, De la Puente E, López deMunain A, Sarasqueta C, de Arce A, Poza JJ, Martí-Massó JF. Prevalence of Parkinson’s disease and other types of Parkinsonism. J Neurol. 2004;251(3):340–5.CrossRefPubMedGoogle Scholar
  13. Bollen M, Miralpeix M, Ventura F, Toth B, Bartrons R, Stalmans W. Oral administration of vanadate to streptozotocin-diabetic rats restores the glucose-induced activation of liver glycogen synthase. Biochem J. 1990;267(1):269–71.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bunting RM. Vanadium: how market developments affect the titanium industry. Strategic minerals corporation, Titanium 2006, International Titanium Association Conference. San Diego, California. 2006.Google Scholar
  15. Calderon-Garciduenas L, Leray E, Heydarpour P, Torres-Jardon R, Reis J. Air pollution, a rising environmental risk factor for cognition, neuroinflammation and neurodegeneration: the clinical impact on children and beyond. Rev Neurol. 2016;172(1):69–80.CrossRefPubMedGoogle Scholar
  16. ChemIDPlus. Hazardous Substance Database. 2016.Google Scholar
  17. Chong IW, Lin SR, Hwang JJ, Huang MS, Wang TH, Tsai MS, Hou JJ, Paulauskis JD. Expression and regulation of macrophage inflammatory protein-2 gene by vanadium in mouse macrophages. Inflammation. 2000;24(2):127–39.CrossRefPubMedGoogle Scholar
  18. Cortizo AMA, Bruzzone L, Molinuevo S, Etcheverry SB. A possible role of oxidative stress in the vanadium-induced cytotoxicity in the MC3T3E1 osteoblast and UMR106 osteosarcoma cell lines. Toxicology. 2000;147(2):89–99.CrossRefPubMedGoogle Scholar
  19. Crans DC, Smee JJ, Gaidamauskas E, Yang L. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev. 2004;104(2):849–902.CrossRefPubMedGoogle Scholar
  20. Cruz TF, Morgan A, Min W. In vitro and in vivo antineoplastic effects of orthovanadate. Mol Cell Biochem. 1995;153(1-2):161–6.CrossRefPubMedGoogle Scholar
  21. DeWitt J, Buck B, Goossens D, Hu Q, Chow R, David W, Young S, Teng Y, Leetham-Spencer M, Murphy L, Pollard J, McLaurin B, Gerads R, Keil D. Health effects following subacute exposure to geogenic dusts from arsenic-rich sediment at the Nellis dunes recreation area, Las Vegas, NV. Toxicol Appl Pharmacol. 2016;304:79–89.CrossRefPubMedGoogle Scholar
  22. Ding M, Gannett PM, Rojanasakul Y, Liu K, Shi X. One-electron reduction of vanadate by ascorbate and related free radical generation at physiological pH. J Inorg Biochem. 1994;55(2):101–12.CrossRefPubMedGoogle Scholar
  23. Ding M, Li JJ, Leonard SS, Ye JP, Shi X, Colburn NH, Castranova V, Vallyathan V. Vanadate-induced activation of activator protein-1: role of reactive oxygen species. Carcinogenesis. 1999;20(4):663–8.CrossRefPubMedGoogle Scholar
  24. Done AK. Of metals and chelation. AK: Done; 1979. p. 186–9.Google Scholar
  25. Duffus JH. Carcinogenicity classification of vanadium pentoxide and inorganic vanadium compounds, the NTP study of carcinogenicity of inhaled vanadium pentoxide, and vanadium chemistry. Regul Toxicol Pharmacol. 2007;47(1):110–4.CrossRefPubMedGoogle Scholar
  26. Elbaz A, Bower JH, Maraganore DM, McDonnell SK, Peterson BJ, Ahlskog JE, Schaid DJ, Rocca WA. Risk tables for parkinsonism and Parkinson’s disease. J Clin Epidemiol. 2002;55(1):25–31.CrossRefPubMedGoogle Scholar
  27. Evangelou AM. Vanadium in cancer treatment. Crit Rev Oncol Hematol. 2002;42(3):249–65.CrossRefPubMedGoogle Scholar
  28. Fall PA, Fredrikson M, Axelson O, Granerus AK. Nutritional and occupational factors influencing the risk of Parkinson’s disease: a case-control study in southeastern Sweden. Mov Disord. 1999;14(1):28–37.CrossRefPubMedGoogle Scholar
  29. Farinelli SE, Greene LA. Cell cycle blockers mimosine, ciclopirox, and deferoxamine prevent the death of PC12 cells and postmitotic sympathetic neurons after removal of trophic support. J Neurosci. 1996;16(3):1150–62.PubMedGoogle Scholar
  30. Faure R, Vincent M, Dufour M, Shaver A, Posner BI. Arrest at the G2/M transition of the cell cycle by protein-tyrosine phosphatase inhibition: studies on a neuronal and a glial cell line. J Cell Biochem. 1995;59(3):389–401.CrossRefPubMedGoogle Scholar
  31. Fenech M, Ferguson LR. Vitamins/minerals and genomic stability in humans. Mutat Res/Fundament Mol Mech Mutagen. 2001;475(1–2):1–6.Google Scholar
  32. Folarin O, Olopade F, Onwuka S, Olopade J. Memory deficit recovery after chronic vanadium exposure in mice. Oxidative Med Cell Longev. 2016;2016:4860582.CrossRefGoogle Scholar
  33. Friberg L, Nordberg GF, Kessler E, Vouk VB. Handbook of the toxicology of metals. New York: Elsevier Science Publishers BV; 1986.Google Scholar
  34. Gândara RMC, Soares SS, Martins H, Gutiérrez-Merino C, Aureliano M. Vanadate oligomers: in vivo effects in hepatic vanadium accumulation and stress markers. J Inorg Biochem. 2005;99(5):1238–44.CrossRefPubMedGoogle Scholar
  35. Gopalbhai K, Meloche S. Repression of mitogen-activated protein kinases ERK1/ERK2 activity by a protein tyrosine phosphatase in rat fibroblasts transformed by upstream oncoproteins. J Cell Physiol. 1998;174(1):35–47.CrossRefPubMedGoogle Scholar
  36. Gorell JM, Rybicki BA, Cole Johnson C, Peterson EL. Occupational metal exposures and the risk of Parkinson’s disease. Neuroepidemiology. 1999;18(6):303–8.CrossRefPubMedGoogle Scholar
  37. Gorell JM, Peterson EL, Rybicki BA, Johnson CC. Multiple risk factors for Parkinson’s disease. J Neurol Sci. 2004;217(2):169–74.CrossRefPubMedGoogle Scholar
  38. Greenwood NN, Earnshaw A. Chemistry of the elements (2nd edition): Butterworth-Heinemann; 1997.Google Scholar
  39. Hanna PA, Jankovic J, Kirkpatrick JB. Multiple system atrophy: the putative causative role of environmental toxins. Arch Neurol. 1999;56(1):90–4.CrossRefPubMedGoogle Scholar
  40. Haunstetter A, Izumo S. Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res. 1998;82(11):1111–29.CrossRefPubMedGoogle Scholar
  41. Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer. 2003;3(4):276–85.CrossRefPubMedGoogle Scholar
  42. IARC. Cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide, IARC monographs on the evaluation of carcinogenic risks to humans. Lyon: International Agency for Research on Cancer; 2006a. p. 227–92.Google Scholar
  43. IARC. Cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide, IARC monographs on the evaluation of carcinogenic risks to humans. International Agency for Research on Cancer, Lyon, France; 2006b. p. 227–92.Google Scholar
  44. Jankovic J. Searching for a relationship between manganese and welding and Parkinson’s disease. Neurology. 2005;64(12):2021–8.CrossRefPubMedGoogle Scholar
  45. Jaspers I, Samet JM, Reed W. Arsenite exposure of cultured airway epithelial cells activates kappaB-dependent interleukin-8 gene expression in the absence of nuclear factor-kappaB nuclear translocation. J Biol Chem. 1999;274(43):31025–33.CrossRefPubMedGoogle Scholar
  46. Jaspers I, Samet JM, Erzurum S, Reed W. Vanadium-induced kappaB-dependent transcription depends upon peroxide-induced activation of the p38 mitogen-activated protein kinase. Am J Respir Cell Mol Biol. 2000;23(1):95–102.CrossRefPubMedGoogle Scholar
  47. Jiang M, Li Y, Zhang B, Zhou A, Zheng T, Qian Z, Du X, Zhou Y, Pan X, Hu J, Wu C, Peng Y, Liu W, Zhang C, Xia W, Xu S. A nested case-control study of prenatal vanadium exposure and low birthweight. Hum Reprod. 2016;31(9):2135–41.CrossRefPubMedGoogle Scholar
  48. Kacew S, Parulekar MR, Merali Z. Effects of parenteral vanadium administration on pulmonary metabolism of rats. Toxicol Lett. 1982;11(1):119–24.CrossRefPubMedGoogle Scholar
  49. Keil D, Buck B, Goossens D, Teng Y, Leetham M, Murphy L, Pollard J, Eggers M, McLaurin B, Gerads R, DeWitt J. Immunotoxicological and neurotoxicological profile of health effects following subacute exposure to geogenic dust from sand dunes at the Nellis dunes recreation area, Las Vegas, NV. Toxicol Appl Pharmacol. 2016;291:1–12.CrossRefPubMedGoogle Scholar
  50. Kiviluoto M, Pyy L, Pakarinen A. Serum and urinary vanadium of vanadium-exposed workers. Scand J Work Environ Health. 1979;5(4):362–7.CrossRefPubMedGoogle Scholar
  51. Kumar A, Calne SM, Schulzer M, Mak E, Wszolek Z, Van Netten C, Tsui JK, Stoessl AJ, Calne DB. Clustering of Parkinson disease: shared cause or coincidence? Arch Neurol. 2004;61(7):1057–60.CrossRefPubMedGoogle Scholar
  52. Kummer JL, Rao PK, Heidenreich KA. Apoptosis induced by withdrawal of trophic factors is mediated by p38 mitogen-activated protein kinase. J Biol Chem. 1997;272(33):20490–4.CrossRefPubMedGoogle Scholar
  53. Kyriakis JM, Avruch J. Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem. 1996;271(40):24313–6.CrossRefPubMedGoogle Scholar
  54. Lau JY, Qian KP, Wu PC, Davis GL. Ribonucleotide vanadyl complexes inhibit polymerase chain reaction. Nucleic Acids Res. 1993;21(11):2777.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Li H, Zhou D, Zhang Q, Feng C, Zheng W, He K, Lan Y. Vanadium exposure-induced neurobehavioral alterations among Chinese workers. Neurotoxicology. 2013;36:49–54.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Liochev SI, Fridovich I. Vanadate-stimulated oxidation of NAD(P)H in the presence of biological membranes and other sources of O2−. Arch Biochem Biophys. 1990;279(1):1–7.CrossRefPubMedGoogle Scholar
  57. Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995;80(2):179–85.CrossRefPubMedGoogle Scholar
  58. McInerny SC, Brown AL, Smith DW. Region-specific changes in mitochondrial D-loop in aged rat CNS. Mech Ageing Dev. 2009;130(5):343–9.CrossRefPubMedGoogle Scholar
  59. McNeilly JD, Heal MR, Beverland IJ, Howe A, Gibson MD, Hibbs LR, MacNee W, Donaldson K. Soluble transition metals cause the pro-inflammatory effects of welding fumes in vitro. Toxicol Appl Pharmacol. 2004;196(1):95–107.CrossRefPubMedGoogle Scholar
  60. Morinville A, Maysinger D, Shaver A. From Vanadis to Atropos: vanadium compounds as pharmacological tools in cell death signalling. Trends Pharmacol Sci. 1998;19(11):452–60.CrossRefPubMedGoogle Scholar
  61. Mukherjee B, Patra B, Mahapatra S, Banerjee P, Tiwari A, Chatterjee M. Vanadium—an element of atypical biological significance. Toxicol Lett. 2004;150(2):135–43.CrossRefPubMedGoogle Scholar
  62. Nakai M, Watanabe H, Fujiwara C, Kakegawa H, Satoh T, Takada J, Matsushita R, Sakurai H. Mechanism on insulin-like action of vanadyl sulfate: studies on interaction between rat adipocytes and vanadium compounds. Biol Pharm Bull. 1995;18(5):719–25.CrossRefPubMedGoogle Scholar
  63. Ngwa HA, Kanthasamy A, Jin H, Anantharam V, Kanthasamy AG. Vanadium exposure induces olfactory dysfunction in an animal model of metal neurotoxicity. Neurotoxicology. 2014;43:73–81.CrossRefPubMedGoogle Scholar
  64. Noonan CW, Reif JS, Yost M, Touchstone J. Occupational exposure to magnetic fields in case-referent studies of neurodegenerative diseases. Scand J Work Environ Health. 2002;28(1):42–8.CrossRefPubMedGoogle Scholar
  65. Ouellet M, Barbeau B, Tremblay MJ. p56(lck), ZAP-70, SLP-76, and calcium-regulated effectors are involved in NF-kappaB activation by bisperoxovanadium phosphotyrosyl phosphatase inhibitors in human T cells. J Biol Chem. 1999;274(49):35029–36.CrossRefPubMedGoogle Scholar
  66. Pandey SK, Chiasson JL, Srivastava AK. Vanadium salts stimulate mitogen-activated protein (MAP) kinases and ribosomal S6 kinases. Mol Cell Biochem. 1995;153(1-2):69–78.CrossRefPubMedGoogle Scholar
  67. Pandey SK, Theberge JF, Bernier M, Srivastava AK. Phosphatidylinositol 3-kinase requirement in activation of the ras/C-raf-1/MEK/ERK and p70(s6k) signaling cascade by the insulinomimetic agent vanadyl sulfate. Biochemistry. 1999;38(44):14667–75.CrossRefPubMedGoogle Scholar
  68. Park J, Yoo CI, Sim CS, Kim HK, Kim JW, Jeon BS, Kim KR, Bang OY, Lee WY, Yi Y, Jung KY, Chung SE, Kim Y. Occupations and Parkinson’s disease: a multi-center case-control study in South Korea. Neurotoxicology. 2005a;26(1):99–105.CrossRefPubMedGoogle Scholar
  69. Park RM, Schulte PA, Bowman JD, Walker JT, Bondy SC, Yost MG, Touchstone JA, Dosemeci M. Potential occupational risks for neurodegenerative diseases. Am J Ind Med. 2005b;48(1):63–77.CrossRefPubMedGoogle Scholar
  70. Patel B, Henderson GE, Haswell SJ, Grzeskowiak R. Speciation of vanadium present in a model yeast system. Analyst. 1990;115(8):1063–6.CrossRefGoogle Scholar
  71. Pyrzyńska K, Wierzbicki T. Determination of vanadium species in environmental samples. Talanta. 2004;64(4):823–9.CrossRefPubMedGoogle Scholar
  72. Racette BA, McGee-Minnich L, Moerlein SM, Mink JW, Videen TO, Perlmutter JS. Welding-related parkinsonism: clinical features, treatment, and pathophysiology. Neurology. 2001;56(1):8–13.CrossRefPubMedGoogle Scholar
  73. Racette BA, Tabbal SD, Jennings D, Good L, Perlmutter JS, Evanoff B. Prevalence of parkinsonism and relationship to exposure in a large sample of Alabama welders. Neurology. 2005;64(2):230–5.CrossRefPubMedGoogle Scholar
  74. Ray RS, Rana B, Swami B, Venu V, Chatterjee M. Vanadium mediated apoptosis and cell cycle arrest in MCF7 cell line. Chem Biol Interact. 2006;163(3):239–47.CrossRefPubMedGoogle Scholar
  75. Reis AP, Patinha C, Noack Y, Robert S, Dias AC. Assessing human exposure to aluminium, chromium and vanadium through outdoor dust ingestion in the Bassin Minier de Provence, France. Environ Geochem Health. 2014;36(2):303–17.CrossRefPubMedGoogle Scholar
  76. Rogers MV, Buensuceso C, Montague F, Mahadevan L. Vanadate stimulates differentiation and neurite outgrowth in rat pheochromocytoma PC12 cells and neurite extension in human neuroblastoma SH-SY5Y cells. Neuroscience. 1994;60(2):479–94.CrossRefPubMedGoogle Scholar
  77. Sabbioni E, Pozzi G, Pintar A, Casella L, Garattini S. Cellular retention, cytotoxicity and morphological transformation by vanadium(IV) and vanadium(V) in BALB/3T3 cell lines. Carcinogenesis. 1991;12(1):47–52.CrossRefPubMedGoogle Scholar
  78. Sanderson JT. Hazards of the arc-air gouging process. Ann Occup Hyg. 1968;11(2):123–33.CrossRefPubMedGoogle Scholar
  79. Sferlazza SJ, Beckett WS. The respiratory health of welders. Am Rev Respir Dis. 1991;143(5 Pt 1):1134–48.CrossRefPubMedGoogle Scholar
  80. Sheridan CJ, Pfleger RC, McClellan RO. Cytotoxicity of vanadium pentoxide on pulmonary alveolar macrophages from dog, rabbit, and rat: effect on viability and effect on lipid metabolism. Ann Resp Inhalation Toxicol; 1978. p. 294–8.Google Scholar
  81. SIMRAC. Hazardous metals in mining processing plants in South Africa. The risk of occupational exposure Mine Health and Safety Council (Safety in Mines Research Advisory Committee Report). 2000.Google Scholar
  82. Sjoberg S-G. Vanadium bronchitis from cleaning oil-fired boilers. Occup Med. 1954;4(1):31.CrossRefGoogle Scholar
  83. Stankiewicz PJ, Tracey AS. Stimulation of enzyme activity by oxovanadium complexes. Met Ions Biol Syst. 1995;31:249–85.PubMedGoogle Scholar
  84. Stemmler AJ, Burrows CJ. Guanine versus deoxyribose damage in DNA oxidation mediated by vanadium(IV) and vanadium(V) complexes. J Biol Inorg Chem. 2001;6(1):100–6.CrossRefPubMedGoogle Scholar
  85. Sundin DS. National occupational exposure survey database 1981–1983. 1998.Google Scholar
  86. Thompson HJ, Chasteen ND, Meeker LD. Dietary vanadyl(IV) sulfate inhibits chemically-induced mammary carcinogenesis. Carcinogenesis. 1984;5(6):849–51.CrossRefPubMedGoogle Scholar
  87. Tracey AS. Hydroxamido vanadates: aqueous chemistry and function in protein tyrosine phosphatases and cell cultures. J Inorg Biochem. 2000;80(1–2):11–6.CrossRefPubMedGoogle Scholar
  88. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160(1):1–40.CrossRefPubMedGoogle Scholar
  89. Whitmarsh AJ, Davis RJ. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med. 1996;74(10):589–607.CrossRefPubMedGoogle Scholar
  90. Witkowska D, Brzezinski J. Alteration of brain noradrenaline, dopamine and 5-hydroxytryptamine levels during vanadium poisoning. Pol J Pharmacol Pharm. 1979;31(4):393–8.PubMedGoogle Scholar
  91. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995;270(5240):1326–31.CrossRefPubMedGoogle Scholar
  92. Ye J, Ding M, Zhang X, Rojanasakul Y, Nedospasov S, Vallyathan V, Castranova V, Shi X. Induction of TNFalpha in macrophages by vanadate is dependent on activation of transcription factor NF-kappaB and free radical reactions. Mol Cell Biochem. 1999;198(1-2):193–200.CrossRefPubMedGoogle Scholar
  93. Yu IJ, Kim KJ, Chang HK, Song KS, Han KT, Han JH, Maeng SH, Chung YH, Park SH, Chung KH, Han JS, Chung HK. Pattern of deposition of stainless steel welding fume particles inhaled into the respiratory systems of Sprague–Dawley rats exposed to a novel welding fume generating system. Toxicol Lett. 2000;116(1–2):103–11.CrossRefPubMedGoogle Scholar
  94. Zhang Z, Huang C, Li J, Leonard SS, Lanciotti R, Butterworth L, Shi X. Vanadate-induced cell growth regulation and the role of reactive oxygen species. Arch Biochem Biophys. 2001;392(2):311–20.CrossRefPubMedGoogle Scholar
  95. Zhao Z, Tan Z, Diltz CD, You M, Fischer EH. Activation of mitogen-activated protein (MAP) kinase pathway by pervanadate, a potent inhibitor of tyrosine phosphatases. J Biol Chem. 1996;271(36):22251–5.CrossRefPubMedGoogle Scholar
  96. Zhao Y, Ye L, Liu H, Xia Q, Zhang Y, Yang X, Wang K. Vanadium compounds induced mitochondria permeability transition pore (PTP) opening related to oxidative stress. J Inorg Biochem. 2010;104(4):371–8.CrossRefPubMedGoogle Scholar
  97. Zhu CW, Liu YX, Huang CJ, Gao W, Hu GL, Li J, Zhang Q, Lan YJ. Effect of vanadium exposure on neurobehavioral function in workers. Zhonghua lao dong wei sheng zhi ye bing za zhi = Zhonghua laodong weisheng zhiyebing zazhi Chin J Indust Hyg Occup Dis. 2016;34(2):103–6.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hilary Afeseh Ngwa
    • 1
  • Muhammet Ay
    • 1
  • Huajun Jin
    • 1
  • Vellareddy Anantharam
    • 1
  • Arthi Kanthasamy
    • 1
  • Anumantha G. Kanthasamy
    • 1
    Email author
  1. 1.Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical SciencesIowa State UniversityAmesUSA

Personalised recommendations