Advertisement

Neurotoxicity of Metal Mixtures

  • V. M. Andrade
  • M. Aschner
  • A. P. Marreilha dos SantosEmail author
Chapter
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 18)

Abstract

Metals are the oldest toxins known to humans. Metals differ from other toxic substances in that they are neither created nor destroyed by humans (Casarett and Doull’s, Toxicology: the basic science of poisons, 8th edn. McGraw-Hill, London, 2013). Metals are of great importance in our daily life and their frequent use makes their omnipresence and a constant source of human exposure. Metals such as arsenic [As], lead [Pb], mercury [Hg], aluminum [Al] and cadmium [Cd] do not have any specific role in an organism and can be toxic even at low levels. The Substance Priority List of Agency for Toxic Substances and Disease Registry (ATSDR) ranked substances based on a combination of their frequency, toxicity, and potential for human exposure. In this list, As, Pb, Hg, and Cd occupy the first, second, third, and seventh positions, respectively (ATSDR, Priority list of hazardous substances. U.S. Department of Health and Human Services, Public Health Service, Atlanta, 2016). Besides existing individually, these metals are also (or mainly) found as mixtures in various parts of the ecosystem (Cobbina SJ, Chen Y, Zhou Z, Wub X, Feng W, Wang W, Mao G, Xu H, Zhang Z, Wua X, Yang L, Chemosphere 132:79–86, 2015). Interactions among components of a mixture may change toxicokinetics and toxicodynamics (Spurgeon DJ, Jones OAH, Dorne J-L, Svendsen C, Swain S, Stürzenbaum SR, Sci Total Environ 408:3725–3734, 2010) and may result in greater (synergistic) toxicity (Lister LJ, Svendsen C, Wright J, Hooper HL, Spurgeon DJ, Environ Int 37:663–670, 2011). This is particularly worrisome when the components of the mixture individually attack the same organs. On the other hand, metals such as manganese [Mn], iron [Fe], copper [Cu], and zinc [Zn] are essential metals, and their presence in the body below or above homeostatic levels can also lead to disease states (Annangi B, Bonassi S, Marcos R, Hernández A, Mutat Res 770(Pt A):140–161, 2016). Pb, As, Cd, and Hg can induce Fe, Cu, and Zn dyshomeostasis, potentially triggering neurodegenerative disorders, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Additionally, changes in heme synthesis have been associated with neurodegeneration, supported by evidence that a decline in heme levels might explain the age-associated loss of Fe homeostasis (Atamna H, Killile DK, Killile NB, Ames BN, Proc Natl Acad Sci U S A 99(23):14807–14812, 2002).

The sources, disposition, transport to the brain, mechanisms of toxicity, and effects in the central nervous system (CNS) and in the hematopoietic system of each one of these metals will be described. More detailed information on Pb, Mn, Al, Hg, Cu, and Zn is available in other chapters. A major focus of the chapter will be on Pb toxicity and its interaction with other metals.

Keywords

Metal neurotoxicity Metal mixtures Hematopoietic toxicity Metal interactions 

References

  1. Abboud P, Wilkinson KJ. Role of metal mixtures (Ca, Cu and Pb) on Cd bioaccumulation and phytochelatin production by Chlamydomonas reinhardtii. Environ Pollut. 2013;179:33–8.PubMedCrossRefGoogle Scholar
  2. Abdulla M, Svensson S, Haeger-Aronsen B. Antagonistic effects of zinc and aluminum on lead inhibition of delta-aminolevulinic acid dehydratase.Arch. Environ Health. 1979;34(6):464–9.CrossRefGoogle Scholar
  3. Abreo K, Glass J, Sella M. Aluminum inhibits hemoglobin synthesis but enhances iron uptake in friend erythroleukemia cells. Kidney Int. 1990;37:677–81.PubMedCrossRefGoogle Scholar
  4. Ademuyiwa A, Agarwal R, Chandra R, Behari JR. Effects of sub-chronic low-level lead exposure on the homeostasis of copper and zinc in rat tissues. J Trace Elem Med Biol. 2010;24:207–11.PubMedCrossRefGoogle Scholar
  5. Adhikari A, Penatti CAA, Resende RR, Ulrich H, Britto LRG, Bechara EJH. 5-Aminolevulinate and 4, 5-dioxovalerate ions decrease GABAA receptor density in neuronal cells, synaptosomes and rat brain. Brain Res. 2006;1093:95–104.PubMedCrossRefGoogle Scholar
  6. Adriano DC. Trace elements in terrestrial environments. New York: Eds. Springer; 2001. 867p.CrossRefGoogle Scholar
  7. Agency for Toxic Substances and Disease Registry. Supplementary guidance for conducting health risk assessment of chemical mixtures, Risk Assessment Forum U.S. Atlanta: U.S. Department of Health and Human Services, Public Health Service; 2000.Google Scholar
  8. Agency for Toxic Substances and Disease Registry. Priority list of hazardous substances. Atlanta: U.S. Department of Health and Human Services, Public Health Service. 2016. https://www.atsdr.cdc.gov/spl/, 5th September 2016, 5 pm.
  9. Agency for Toxic Substances and Disease Registry (ATSDR). Interaction profile for: lead, manganese, zinc and copper. Atlanta: U.S. Department of Health and Human Services, Public Health Service; 2004.Google Scholar
  10. Agency for Toxic Substances and Disease Registry (ATSDR). Arsenic CAS# 7440–38-2. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service; 2007.Google Scholar
  11. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for Cadmium. Atlanta: U.S. Department of Health and Human Services, Public Health Service; 2012.Google Scholar
  12. Ali MM, Alia ML, Islam S, Rahman Z. Preliminary assessment of heavy metals in water and sediment of Karnaphuli River. Bangladesh Environ Earth Sci. 2016;73:1837–48.Google Scholar
  13. Al-Saleh I, Nester M, Abduljabbar M, Al-Rouqi R, Eltabache C, Al-Rajudi T, Elkhati R. Mercury (Hg) exposure and its effects on Saudi breastfed infant’s neurodevelopment. Int J Hyg Environ Health. 2016;219:129–41.PubMedCrossRefGoogle Scholar
  14. Anderson D. Factors contributing to biomarker responses in exposed workers. Mutat Res. 1999;428:197–202.PubMedCrossRefGoogle Scholar
  15. Andrade V, Mateus ML, Batoréu MC, Aschner M, Marreilha dos Santos AP. Changes in rat urinary porphyrin profiles predict the magnitude of the neurotoxic effects induced by a mixture of lead, arsenic and manganese. Neurotoxicology. 2014a;45:168–77.PubMedCrossRefGoogle Scholar
  16. Andrade V, Mateus ML, Santos D, Aschner M, Batoréu MC, Marreilha dos Santos AP. Arsenic and manganese alter lead deposition in the rat. Biol Trace Elem Res. 2014b;158(3):384–91.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Angelovicová L, Fazekasová D. Contamination of the soil and water environment by heavy metals in the former mining area of Rudňany (Slovakia). Soil Water Res. 2014;9(1):18–24.Google Scholar
  18. Annangi B, Bonassi S, Marcos R, Hernández A. Biomonitoring of humans exposed to arsenic, chromium, nickel, vanadium, and complex mixtures of metals by using the micronucleus test in lymphocytes. Mutat Res. 2016;770(Pt A):140–61.PubMedCrossRefGoogle Scholar
  19. Antonio MT, López N and Leret ML. Pb and Cd poisoning during development alters cerebellar and striatal function in rats. Toxicology. 2002; 176: 59–66.Google Scholar
  20. Appel MJ, Kuper CF, Woutersen RA. Disposition, accumulation and toxicity of iron fed as iron (II) sulfate or as sodium iron EDTA in rats. Food Chem Toxicol. 2001;39:261–9.PubMedCrossRefGoogle Scholar
  21. Atamna H, Killile DK, Killile NB, Ames BN. Heme deficiency may be a factor in the mitochondrial and neuronal decay of aging. Proc Natl Acad Sci U S A. 2002;99(23):14807–12.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Atwood CS, Scarpa RC, Huang X, Moir RD, Jones WD, Fairlie DP, Tanzi R, Bush AI. Characterization of copper interactions with Alzheimer amyloid b peptides: identification of an Attomolar-affinity copper binding site on amyloid b1-42. J Neurochem. 2000;43(2):560–8.Google Scholar
  23. Ballatori N. Transport of toxic metals by molecular mimicry. Environ Health Perspect. 2002;110(5):689–94.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Banks WA, Kastin AJ. The aluminum-induced increase in blood-brain barrier permeability to delta-sleep-inducing peptide occurs throughout the brain and is independent of phosphorus and acetylcholinesterase levels. Psychopharmacology. 1985;86(1–2):84–9.PubMedCrossRefGoogle Scholar
  25. Basha R, Wei W, Brydie M, Razmiafshari M, Zawia NH. Lead-induced developmental perturbations in hippocampal Sp1 DNA-binding are prevented by zinc supplementation: in vivo evidence for Pb and Zn competition. Int J Devl Neuroscience. 2003;21:1–12.CrossRefGoogle Scholar
  26. Bazzoni GB, Bollini AN, Hernandez GN, Contini MC, Chiarotto MM, Rasia ML. In vivo effect of aluminium upon the physical properties of the erythrocyte membrane. J Inorg Biochem. 2005;99:822–7.PubMedCrossRefGoogle Scholar
  27. Becaria A, Campbell A, Bondy SC. Aluminum and copper interact in the promotion of oxidative but not in? Ammatory events: implications for Alzheimer’s disease. J Alzheimers Dis. 2003;5:31–8.PubMedCrossRefGoogle Scholar
  28. Bleiberg J, Wallen M, Brodkin R, Applebaum IL. Industrially acquired porphyria. Arch Dermatol. 1967;80:793–7.Google Scholar
  29. Bondier JR, Michel G, Propper A. Harmful effects of cadmium on olfactory system in mice. Inhal Toxicol. 2008;20(13):1169–77.PubMedCrossRefGoogle Scholar
  30. Bowers MA, Aicher LD, Davis HA, Woods JS. Quantitative determination of porphyrins in rat and human urine and evaluation of urinary porphyrin profiles during mercury and lead exposures. J Lab Clin Med. 1992;120:272–81.PubMedGoogle Scholar
  31. Bradberry SM. Metals (cobalt, copper, lead, mercury). Medicine. 2016;44(3):182–4.CrossRefGoogle Scholar
  32. Brenneman KA, Wong BA, Buccellato MA, Costa ER, Gross EA, Dorman DC. Direct olfactory transport of inhaled manganese (54MnCl2) to the rat brain: toxicokinetic investigations in a unilateral nasal occlusion model. Toxicol Appl Pharmacol. 2000;169:238–48.PubMedCrossRefGoogle Scholar
  33. Buchta M, Kiesswetter E, Schaper M, Zschiesche W, Schaller KH, Kuhlmann A, Letzel S. Neurotoxicity of exposures to aluminium welding fumes in the truck trailer construction industry. Environ Toxicol Pharmacol. 2005;19:677–85.CrossRefGoogle Scholar
  34. Calderon J, Ortiz-Perez D, Yanez L, Díaz-Barriga F. Human exposure to metals. Pathways of exposure, biomarkers of effect, and host factors. Ecotoxicol Environ Saf. 2003;56:93–103.PubMedCrossRefGoogle Scholar
  35. Carrizales L, Razoa I, Tellez-Hernandez J, Torres-Nerioa R, Torres A, Batres LE, Cubillas A-C, Díaz-Barriga F. Exposure to arsenic and lead of children living near a copper-smelter in San Luis Potosi, Mexico: Importance of soil contamination for exposure. Environ Res. 2006;101:1–10.PubMedCrossRefGoogle Scholar
  36. Casarett & Doull’s. Toxicology: the basic science of poisons. 8th ed. London: McGraw-Hill; 2013.Google Scholar
  37. Ceccatelli S, Daréb E, Moors M. Methylmercury-induced neurotoxicity and apoptosis. Chem Biol Interact. 2010;188:301–8.PubMedCrossRefGoogle Scholar
  38. Chong ZZ, Li F, Maiese K. Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol. 2005;75:207–46.PubMedCrossRefGoogle Scholar
  39. Christensen JM. Human exposure to toxic metals: factors influencing interpretation of biomonitoring results. Sci Total Environ. 1995;166:89–135.PubMedCrossRefGoogle Scholar
  40. Clarkson TW, Vyas JB, Ballatori N. Mechanisms of mercury disposition in the body. Am J Ind Med. 2007;50(10):757–64.PubMedCrossRefGoogle Scholar
  41. Cobbina SJ, Chen Y, Zhou Z, Wub X, Feng W, Wang W, Mao G, Xu H, Zhang Z, Wua X, Yang L. Low concentration toxic metal mixture interactions: effects on essential and non-essential metals in brain, liver, and kidneys of mice on sub-chronic exposure. Chemosphere. 2015;132:79–86.PubMedCrossRefGoogle Scholar
  42. Colomina MT, Roig JL, Sánchez DJ, Domingo JL. Influence of age on aluminum-induced neurobehavioral effects and morphological changes in rat brain. Neurotoxicology. 2002;23(6):775–81.PubMedCrossRefGoogle Scholar
  43. Costa LG. Biochemical and molecular neurotoxicology: relevance to biomarker development, neurotoxicity testing and risk assessment. Toxicol Lett. 1998;102-103:417–21.PubMedCrossRefGoogle Scholar
  44. Costa LG, Manzo L. Biochemical markers of neurotoxicity: research epidemiological applications. Toxicol Lett. 1995;77(1–3):137–44.PubMedCrossRefGoogle Scholar
  45. Csavina J, Field J, Taylor MP, Gao S, Landázuri A, Betterton EA, Sáez AE. A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Sci Total Environ. 2012;433:58–73.PubMedCrossRefGoogle Scholar
  46. Dai M-C, Zhong Z-H, Sun Y-H, Sun Q-F, Wang Y-T, Yang G-Y, Bian L-G. Curcumin protects against iron induced neurotoxicity in primary cortical neurons by attenuating necroptosis. Neurosci Lett. 2013;536:41–6.PubMedCrossRefGoogle Scholar
  47. Davies KM, Hare DJ, Cottam V, Chen N, Hilgers L, Halliday G, et al. Localization of copper and copper transporters in the human brain. Metallomics. 2013;5:43–51.PubMedCrossRefGoogle Scholar
  48. Desi I, Nagymajtenyi L and Schulz H. Behavioural and neurotoxicological changes caused by cadmium treatment of rats during development. J Appl Toxicol. 1998; 18(1), 63–70, 1998.Google Scholar
  49. Dringen R. Metabolism and functions of glutathione in brain. Prog Neurobiol. 2000;62:649–71.PubMedCrossRefGoogle Scholar
  50. Dudzik CG, Walter ED, Abrams BS, Jurica MS, Millhauser GL. Coordination of copper to the membrane-bound form of alpha-synuclein. Biochemistry. 2012;52:53–60.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Dusek P, Roosc PM, Litwin T, Schneider SA, Flaten TP, Aaseth J. The neurotoxicity of iron, copper and manganese in Parkinson’s and Wilson’s diseases. J Trace Elem Med Biol. 2015;31:193–203.PubMedCrossRefGoogle Scholar
  52. Ebert BL, Bunn HF. Regulation of the erythropoietin gene. Blood. 1999;94:1864–77.PubMedGoogle Scholar
  53. Ekino S, Susa M, Ninomiya T, Imamura K, Kitamura T. Minamata disease revisited: an update on the acute and chronic manifestations of methyl mercury poisoning. J Neur Sci. 2007;262:131–44.CrossRefGoogle Scholar
  54. Emerit J, Edeas M, Bricaire F. Neurodegenerative diseases and oxidative stress. Biomed Pharmacother. 2004;58:39–46.PubMedCrossRefGoogle Scholar
  55. Espinoza A, Le Blanc S, Olivares M, Pizarro F, Ruz M, Arredondo M. Iron, copper, and zinc transport: inhibition of divalent metal transporter 1 (DMT1) and human copper transporter 1 (hCTR1) by shRNA. Biol Trace Elem Res. 2012;146(2):281–6.PubMedCrossRefGoogle Scholar
  56. Exley C. Aluminum and Alzheimer’s disease. J Alzheimers Dis. 2001;3(6):551–2.PubMedCrossRefGoogle Scholar
  57. Fabisiak JP, Pearce LL, Borisenko GG, Tyhurina YY, Tyurin VA, Razzack J, Lazo JS, Pitt BR, Kagan VE. Bifunctional anti/prooxidant potential of metallothionein: redox signaling of copper binding and release. Antioxid Redox Signal. 1999;1:349–64.PubMedCrossRefGoogle Scholar
  58. Fairbrother A, Wenste R, Sappington K, Wood W. Framework for metals risk assessment. Ecotoxicol Environ Saf. 2007;68:145–227.PubMedCrossRefGoogle Scholar
  59. Feron VJ, Groten JP, Jonker D, Cassee FR, van Bladeren PJ. Toxicology of chemical mixtures: challenges for today and the future. Toxicology. 1995;105:415–27.PubMedCrossRefGoogle Scholar
  60. Flora SJS. Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med. 2011;51:257–81.PubMedCrossRefGoogle Scholar
  61. Flora G, Gupta D, Tiwari A. Toxicity of lead: a review with recent updates. Iternterdis Toxicol. 2012;5(2):47–58.Google Scholar
  62. Fowler BA, Mahaffey KR. Interactions among lead, cadmium, and arsenic in relation to porphyrin excretion patterns. Environ Health Perspect. 1978;25:87–90.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Freitas Fonseca M, De Souza Hacon S, Grandjean P, Choi AL, Rodrigues Bastos W. Iron status as a covariate in methylmercury-associated neurotoxicity risk. Chemosphere. 2014;100:89–96.CrossRefGoogle Scholar
  64. Garrick MD, Singleton S, Vargas F, Kuo HC, Zhao L, Knopfel M, Davidson T, Costa M, Paradkar P, Roth JA, Garrick LM. DMT1: which metals does it transport? Biol Res. 2006;39:79–85.PubMedCrossRefGoogle Scholar
  65. Ghorbel I, Maktouf S, Kallel C, Chaabouni SE, Boudawara T, Zeghal N. Disruption of erythrocyte antioxidant defense system, hematological parameters, induction of pro-inflammatory cytokines and DNA damage in liver of co-exposed rats to aluminium and acrylamide. Chem Biol Interact. 2015;236:31–40.PubMedCrossRefGoogle Scholar
  66. Gianutsos G, Seltzer MD, Saymeh R, Wu M-LW, Michel RG. Brain manganese accumulation following systemic administration of different forms. Arch Toxicol. 1985;57:272–5.PubMedCrossRefGoogle Scholar
  67. Gorsky JE, Dietz AA, Spencer H, Osis D. Metabolic balance of aluminum studied in six men. Clin Chem. 1979;25(10):1739–43.PubMedGoogle Scholar
  68. Grandjean P, Herz KT. Methylmercury and brain development: imprecision and underestimation of developmental neurotoxicity in humans. Mt Sinai J Med. 2011;78(1):107–18.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Gu C, Chen S, Xu X, Zheng L, Li Y, Wu K, Liu J, Qi Z, Han D, Chen G, Huo X. Lead and cadmium synergistically enhance the expression of divalent metal transporter 1 protein in central nervous system of developing rats. Neurochem Res. 2009;34:1150–6.PubMedCrossRefGoogle Scholar
  70. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997;388:482–8.PubMedCrossRefGoogle Scholar
  71. Guolo M, Stella AM, Melito V, Parera V, Batle AMC. Altered 5-aminolevulinic acid metabolism leading to pseudophorphyria in hemodialysed patients. lnt J Biochem Cell Bid. 1996;28:311–7.CrossRefGoogle Scholar
  72. Heyer NJ, Bittner AC Jr, Echeverria D, Woods JS. A cascade analysis of the interaction of mercury and coproporphyrinogen oxidase (CPOX) polymorphism on the heme biosynthetic pathway and porphyrin production. Toxicol Lett. 2006;161:159–66.PubMedCrossRefGoogle Scholar
  73. Hift RJ, Thunell S, Brun A. Drugs in porphyria: from observation to a modern algorithm-based system for the prediction of porphyrogenicity. Pharmacol Ther. 2011;132(2):158–69.PubMedCrossRefGoogle Scholar
  74. Hoffmeyer RE, Singh SP, Doonan CJ, Ross ARS, Hughes RJ, Pickering IJ, George GN. Molecular mimicry in mercury toxicology. Chem Res Toxicol. 2006;19(6):753–9.PubMedCrossRefGoogle Scholar
  75. Horiguchi H, Teranishi H, Niiya K, Aoshima K, Katoh T, Sakuragawa N, Kasuya M. Hypoproduction of erythropoietin contributes to anemia in chronic cadmium intoxication: clinical study on Itai-itai disease in Japan. Arch Toxicol. 1994;68(10):632–6.PubMedCrossRefGoogle Scholar
  76. Horiguchi H, Aoshima K, Oguma R, Sasaki S, Miyamoto K, Hosoi Y, Katoh T, Kayama F. Latest status of cadmium accumulation and its effects on kidneys, bone, and erythropoiesis in inhabitants of the formerly cadmium-polluted Jinzu River Basin in Toyama, Japan, after restoration of rice paddies. Int Arch Occup Environ Health. 2010;83:953–70.PubMedCrossRefGoogle Scholar
  77. Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. Environ Sci Technol. 2013;47(6):2441–56.PubMedCrossRefGoogle Scholar
  78. Huang P, Chen C, Wang H, Li G, Jing H, Han Y, Li N, Xiao Y, Yu Q, Liu Y, Wang P, Shi Z, Sun Z. Manganese effects in the liver following subacute or subchronic manganese chloride exposure in rats. Ecotoxicol Environ Saf. 2011;74:615–22.PubMedCrossRefGoogle Scholar
  79. Illing AC, Shawki A, Cunningham CL, Mackenzie B. Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1. J Biol Chem. 2012;287(36):30485–96.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Islam E, Yang X, He Z and Mahmood Q. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. J Zhejiang Univ Sci B. 2007; 8(1): 1–13.Google Scholar
  81. Jadhav S, Sarkar S, Patil R, Tripathi H. Effects of subchronic exposure via drinking water to a mixture of eight water-contaminating metals: a biochemical and histopathological study in male rats. Arch Environ Con Tox. 2007;53:667–77.CrossRefGoogle Scholar
  82. Järup L. Hazards of heavy metal contamination. Br Med Bull. 2003;68:167–82.PubMedCrossRefGoogle Scholar
  83. Jeong KS, Park H, Hac E, Hong Y-C, Hae M, Park H, Kimf B-N, Leeg SJ, Lee KY, Kim JH, Kim Y. Evidence that cognitive deficit in children is associated not only with iron deficiency, but also with blood lead concentration: a preliminary study. J Trace Elem Med Biol. 2015;29:336–41.PubMedCrossRefGoogle Scholar
  84. Jiang X, McDermott JR, Ajees AA, Rosen BP, Liu Z. Trivalent arsenicals and glucose use different translocation pathways in mammalian GLUT1. Metallomics. 2010;2(3):211–9.PubMedCrossRefGoogle Scholar
  85. Jin T, Lu J and Nordberg M.Toxicokinetics and biochemistry of cadmium with special emphasis on the role of metallothionein. Neurotoxicology. 1998; 19(4-5):529-35.Google Scholar
  86. Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011;283(2–3):65–87.PubMedCrossRefGoogle Scholar
  87. Julka D, Gill KD. Development of a possible peripheral marker for aluminum neurotoxicity. Med Sci Res. 1995;23:311–4.Google Scholar
  88. Kakkar P, Jaffery FN. Biological markers for metal toxicity. Environ Toxicol Pharmacol. 2005;19:335–49.PubMedCrossRefGoogle Scholar
  89. Kalia K, Chandra SV, Viswanathan PN. Effect of 54Mn and lead interaction on their binding with tissue proteins: in vitro studies. Ind Health. 1984;22:207–18.PubMedCrossRefGoogle Scholar
  90. Kauppinen R. Porphyrias Lancet. 2005;365:241–52.PubMedCrossRefGoogle Scholar
  91. Kaur A, Joshi K, Minz RW, Gill KD. Neurofilament phosphorylation and disruption: a possible mechanism of chronic aluminium toxicity in Wistar rats. Toxicology. 2006;219(1–3):1–10.PubMedCrossRefGoogle Scholar
  92. Kawahara M, Kato-Negishi M. Link between aluminum and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid Cascade hypotheses. Int J Alzheimers Dis. 2011;2011:276393.PubMedPubMedCentralGoogle Scholar
  93. Kerper LE, Ballatori N, Clarkson TW. Methylmercury transport across the blood-brain barrier by an amino acid carrier. Am J Phys. 1992;262:761–5.Google Scholar
  94. Kile ML, Fara JM, Ronnenberg AG, Quamruzzaman Q, Rahman M, Mostofa G, Afroz S, Christiani DC. A cross sectional study of anemia and iron deficiency as risk factors for arsenic-induced skin lesions in Bangladeshi women. BMC Public Health. 2016;16:158.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Kim S, Moon C, Eun S, Ryu P, Jo S. Identification of ASK1, MKK4, JNK, c-Jun, and caspase-3 as a signaling cascade involved in cadmium-induced neuronal cell apoptosis. Biochem Biophys Res Commun. 2005;328:326–34.PubMedCrossRefGoogle Scholar
  96. Kim Y, Kim BN, Hong Y-C, Shin M-S, Yoo H-J, Kim J-W, Bhang S-Y, Cho S-C. Co-exposure to environmental lead and manganese affects the intelligence of school-aged children. Neurotoxicology. 2009;30:564–71.PubMedCrossRefGoogle Scholar
  97. Kim JH, Lee SJ, Kim SY, Choi G, Lee JJ, Kim HJ, Kim S, Park J, Moon HB, Choi K, Kim S, Choi SR. Association of food consumption during pregnancy with mercury and lead levels in cord blood. Sci Total Environ. 2016a;29(563–564):118–24.CrossRefGoogle Scholar
  98. Kim Y, Oh HG, Cho YY, Kwon O-H, Park MK, Chung S. Stress hormone potentiates Zn2+-induced neurotoxicity via TRPM7 channel in dopaminergic neuron. Biochem Biophys Res Commun. 2016b;470:362–7.PubMedCrossRefGoogle Scholar
  99. Klandorf H, Van Dyke K. Oxidative and nitrosative stresses: their role in health and disease in man and birds. Oxidative stress – molecular mechanisms and biological effects. (Chapter 3). Ed. Volodymyr Lushchak and Halyna M. Semchyshyn. 2012. ISBN 978-953-51-0554-1, Published: April 25, 2012 under CC BY 3.0 license.Google Scholar
  100. Klatzo I, Wisniewski H, Streicher E. Experimental production of neurofibrillary degeneration: 1. Light microscopic observations. J Neuropathol Exp Neurol. 1965;24:187–99.PubMedCrossRefGoogle Scholar
  101. Klauder DS, Petering HG. Protective value of dietary copper and iron against some toxic effects of lead in rats. Environ Health Perspect. 1975;12:77–80.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Kordas K, Queirolo EI, Ettinger AS, Wright RO, Stoltzfus RJ. Prevalence and predictors of exposure to multiple metals in preschool children from Montevideo. Uruguay Sci Total Environ. 2010;408:4488–94.PubMedCrossRefGoogle Scholar
  103. Korolnek T, Hamza I. Like iron in the blood of the people: the requirement for heme trafficking in iron metabolism. Front Pharmacol. 2014;4;5,126.Google Scholar
  104. Kortenkamp and Faust. State of the art report on mixture toxicity – final report. UE Comission. 2009. http://ec.europa.eu/environment/chemicals/effects/pdf/report_mixture_toxicity.pdf, 13th June 2014, 2 p.m.
  105. Kozlowski H, Janicka-Klos A, Brasun J, Gaggelli E, Valensin D, Valensin G. Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation). Coord Chem Rev. 2009;253:2665–85.CrossRefGoogle Scholar
  106. Krüger K, Straub H, Hirner AV, Hippler J, Binding N, Musshoff U. Effects of monomethylarsonic and monomethylarsonous acid on evoked synaptic potentials in hippocampal slices of adult and young rats. Toxicol Appl Pharmacol. 2009;236(1):115–23.PubMedCrossRefGoogle Scholar
  107. Kumar V, Gill KD. Oxidative stress and mitochondrial dysfunction in aluminium neurotoxicity and its amelioration: a review. Neurotoxicology. 2014;41:154–66.PubMedCrossRefGoogle Scholar
  108. Kumar A, Dogra S, Prakash A. Protective effect of curcumin (Curcuma longa), against aluminium toxicity: possible behavioral and biochemical alterations in rats. Behav Brain Res. 2009;205(2):384–90.PubMedCrossRefGoogle Scholar
  109. Kwong WT, Friello P, Semba RD. Interactions between iron deficiency and lead poisoning: epidemiology and pathogenesis. Sci Total Environ. 2004;330:21–37.PubMedCrossRefGoogle Scholar
  110. Lafuente A, Esquifino A. Cadmium effects on hypothalamic activity and pituitary hormone secretion in the male. Toxicol Lett. 1999;110(3):209–18.PubMedCrossRefGoogle Scholar
  111. Landrigan P, Nordberg M, Lucchini R, Nordberg G, Grandjean P, Iregren A, Alessio L. The declaration of Brescia on prevention of the neurotoxicity of metals. Am J Ind Med. 2006;50(10):709–11.CrossRefGoogle Scholar
  112. Lieu PT, Heiskala M, Peterson PA, Yang Y. The roles of iron in health and disease. Mol Asp Med. 2001;22:1–87.CrossRefGoogle Scholar
  113. Lin C-Y, Hsiao W-C, Huang C-J, Kao C-F, Hsua G-S-W. Heme oxygenase-1 induction by the ROS-JNK pathway plays a role in aluminum-induced anemia. J Inorg Biochem. 2013;128:221–8.PubMedCrossRefGoogle Scholar
  114. Lister LJ, Svendsen C, Wright J, Hooper HL, Spurgeon DJ. Modelling the joint effects of a metal and a pesticide on reproduction and toxicokinetics in Lumbricid earthworms. Environ Int. 2011;37:663–70.PubMedCrossRefGoogle Scholar
  115. Liu J, Klaassen CD. Absorption and distribution of cadmium in Metallothionein-I transgenic mice. Fund Appl Toxicol. 1996;29:294–300.CrossRefGoogle Scholar
  116. Liu Z, Sanchez MA, Jiang X, Boles E, Landfear SM, Rosen BP. Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid. Biochem Biophys Res Commun. 2006;351(2):424–30.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Lohren H, Pieper I, Blagojevic L, Bornhorst J, Galla H-J, Schwerdtle T. Neurotoxicity of organic and inorganic mercury species – effects on and transfer across the blood-cerebrospinal fluid barrier, cytotoxic effects in target cells. Perspect Sci. 2015;3:21–2.CrossRefGoogle Scholar
  118. López Alonso M, Prieto Montaña F, Miranda M, Castillo C, Hernández J, Benedito JL. Cadmium and lead accumulation in cattle in NW Spain. Vet Hum Toxicol. 2003;45(3):128–30.PubMedGoogle Scholar
  119. Lopez E, Arce C, Oset-Gasque MJ, Canadas S, González MP. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Rad Biol Med. 2006;40:940–51.PubMedCrossRefGoogle Scholar
  120. Lorincz MT. Neurologic Wilson’s disease. Ann N Y Acad Sci. 2010;1184:173–87.PubMedCrossRefGoogle Scholar
  121. Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci. 1998;158(1):47–52.PubMedCrossRefGoogle Scholar
  122. Lu J, Zheng Y-L, Wu D-M, Sun D-X, Shan Q, Fan S-H. Trace amounts of copper induce neurotoxicity in the cholesterol-fed mice through apoptosis. FEBS Lett. 2006;580:6730–40.PubMedCrossRefGoogle Scholar
  123. Lucchini R, Zimmerman N. Lifetime cumulative exposure as a threat for neurodegeneration: need for prevention strategies on a global scale. Neurotoxicology. 2009;30(6):1144–8.PubMedCrossRefGoogle Scholar
  124. Mahaffey KR, Fowler BA. Effects of concurrent Administration of Lead, cadmium, and arsenic in the rat. Environ Health Perspect. 1977;19:165–71.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Mahaffey KR, Capar SG, Gladen BC, Fowler BA. Concurrent exposure to lead, cadmium, and arsenic. Effects on toxicity and tissue metal concentrations in the rat. J Lab Clin Med. 1981;98(4):463–81.PubMedGoogle Scholar
  126. Maines MD. Regional distribution of the enzymes of haem biosynthesis and the inhibition of 5-aminolaevulinate synthase by manganese in the rat brain. Biochem J. 1980;190:315–21.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Markiewicz-Górka I, Januszewska L, Michalak A, Prokopowicz A, Januszewska E, Pawlas N, Pawlas K. Effects of chronic exposure to lead, cadmium, and manganese mixtures on oxidative stress in rat liver and heart. Arh Hig Rada Toksikol. 2015;66(1):51–62.PubMedCrossRefGoogle Scholar
  128. Martinez-Finley EJ, Chakraborty S, Fretham SJB, Aschner M. Cellular transport and homeostasis of essential and nonessential metals. Metallomics. 2012;4(7):593–605.PubMedPubMedCentralCrossRefGoogle Scholar
  129. McCord MC, Aizenman E. The role of intracellular zinc release in aging, oxidative stress, and Alzheimer’s disease. Front Aging Neurosci. 2014;6:77.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Mejía JJ, Diáz-Barriga F, Calderón J, Ríos C, Jiménez-Capdeville ME. Effects of lead-arsenic combined exposure on central Monoaminergic systems. Neurotoxicol Teratol. 1997;19(6):489–97.PubMedCrossRefGoogle Scholar
  131. Méndez-Armenta M, Ríos C. Cadmium neurotoxicity. Environ Toxicol Pharmacol. 2007;23(3):350–8.PubMedCrossRefGoogle Scholar
  132. Méndez-Armenta M, Villeda-Hernández J, Barroso-Moguel R, Nava-Ruiz C, Jiménez-Capdeville ME, Rios C. Brain regional lipid peroxidation and metallothionein levels of developing rats exposed to cadmium and dexamethasone. Toxicol Lett. 2003;144(2):151–7.PubMedCrossRefGoogle Scholar
  133. Migliore L, Coppedè F. Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mut Res. 2009;674:73–84.CrossRefGoogle Scholar
  134. Miu AC, Andreescu CE, Vasiu R, Olteanu AI. A behavioral and histological study of the effects of long-term exposure of adult rats to aluminum. Int J Neurosci. 2003;113(9):1197–211.PubMedCrossRefGoogle Scholar
  135. Molina RM, Phattanarudee S, Kim J, Thompson K, Wessling-Resnick M, Maher TJ, Brain JD. Ingestion of Mn and Pb by rats during and after pregnancy alters iron metabolism and behavior in offspring. Neurotoxicology. 2011;32(4):413–22.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Monroe RK, Halvorsen SW. Cadmium blocks receptor-mediated Jak/STAT signaling in neurons by oxidative stress. Free Radic Biol Med. 2006;41(3):493–502.PubMedCrossRefGoogle Scholar
  137. Mutti A. Biological monitoring in occupational and environmental toxicology. Toxicol Lett. 1999;108:77–89.PubMedCrossRefGoogle Scholar
  138. Nasiadek M, Chmielnicka J, Subdys J. Analysis of urinary Porphyrins in rats exposed to aluminum and iron. Ecotoxicol Environ Saf. 2001;48(1):11–7.PubMedCrossRefGoogle Scholar
  139. Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, Suk WA. The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect. 2013;121(3):295–302.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Nazir R, Shaheen N, Shah MH. Indoor/outdoor relationship of trace metals in the atmospheric particulate matter of an industrial area. Atmos Res. 2011;101:765–72.CrossRefGoogle Scholar
  141. Neal AP, Guilarte TR. Mechanisms of heavy metal neurotoxicity: lead and manganese. Toxicol Res (Camb). 2013;(2):99–114.Google Scholar
  142. Nehru B, Anand P. Oxidative damage following chronic aluminium exposure in adult and pup rat brains. J Trace Elem Med Biol. 2005;19(2–3):203–8.PubMedCrossRefGoogle Scholar
  143. Nordberg M, Nordberg GF. Metallothioneins: historical development and overview. Met Ions Life Sci. 2009;5:1–29.Google Scholar
  144. Notarachille G, Arnesano F, Calò V, Meleleo D. Heavy metals toxicity: effect of cadmium ions on amyloid beta protein 1-42. Possible implications for Alzheimer’s disease. Biometals. 2014;27(2):371–88.PubMedCrossRefGoogle Scholar
  145. Nriagu J. Zinc toxicity in humans. School of Public Health, University of Michigan, Elsevier B.V. 2007.Google Scholar
  146. O’Neil P. Heavy metals in soils. In: Alloway BJ, editor. Arsenic. London: Blackie Academic and Professional Arsenic; 1995. p. 105–21.Google Scholar
  147. Obiri S, Yeboah PO, Osae S, Adu-Kumi S. Levels of arsenic, mercury, cadmium, copper, lead, zinc and manganese in serum and whole blood of resident adults from mining and non-mining communities in Ghana. Environ Sci Pollut Res Int. 2016;23(16):16589–97.PubMedCrossRefGoogle Scholar
  148. Oteiza PI, Keen CL, Han B, Golub MS. Aluminum accumulation and neurotoxicity in Swiss-Webster mice after long-term dietary exposure to aluminum and citrate. Metabolism. 1993;42(10):1296–300.PubMedCrossRefGoogle Scholar
  149. Park JD, Zheng W. Human exposure and health effects of inorganic and elemental mercury. J Prev Med Public Health. 2012;45(6):344–52.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Patrick L. Lead toxicity, a review of the literature. Part I: exposure, evaluation, and treatment. Altern Med Rev. 2006;11(1):2–22.PubMedGoogle Scholar
  151. Peakall D, Burger J. Methodologies for assessing exposure to metals: speciation, bioavailability of metals, and ecological host factors. Ecotoxicol Environ Saf. 2003;56(1):110–21.PubMedCrossRefGoogle Scholar
  152. Piao F, Cheng F, Chen H, Li G, Sun X, Liu S, Yamauchi T, Yokoyama K. Effects of Zn administration on Pb toxicities in rats. Ind Health. 2007;45:546–51.PubMedCrossRefGoogle Scholar
  153. Pirpamer L, Hofer E, Gesierich B, De Guio F, Freudenberger P, Seiler S, Duering M, Jouvent E, Duchesnay E, Dichgans M, Ropele S, Schmidt R. Determinants of iron accumulation in the normal aging brain. Neurobiol Aging. 2016;43:149–55.PubMedCrossRefGoogle Scholar
  154. Pohl HR, Hansen H, Chou C-HSJ. Public health guidance values for chemical mixtures: current practice and future directions. Regul Toxicol Pharmacol. 1997;26:322–9.PubMedCrossRefGoogle Scholar
  155. Pohl HR, Roney N, Abadin HG. Metal ions affecting the neurological system. Met Ions Life Sci. 2011;8:247–62.PubMedGoogle Scholar
  156. Prüss-Ustün A, Wolf J, Corvalán C, Bos R, Neira M. Preventing disease through healthy environments. A global assessment of the burden of disease from environmental risks. Geneva: World Health Organization (WHO); 2016.Google Scholar
  157. Qato MK, Maines MD. Regulation of heme and drug metabolism activities in the brain by manganese. Biochem Biophys Res Commun. 1985;128(1):18–24.PubMedCrossRefGoogle Scholar
  158. Quintanar L. Manganese neurotoxicity: a bioinorganic chemist’s perspective. Inorg Chim Acta. 2008;361:875–84.CrossRefGoogle Scholar
  159. Quintanilla-Vega B, Hernandez A, Mendoza-Figueroa T. Reduction in porphyrin excretion as a sensitive indicator of lead toxicity in primary cultures of adult rat hepatocytes. Toxicol In Vitro. 1996;10:675–83.PubMedCrossRefGoogle Scholar
  160. Rachakonda V, Pan TH, Le WD. Biomarkers of neurodegenerative disorders: how good are they? Cell Res. 2004;14(5):349–60.CrossRefGoogle Scholar
  161. Ramos-Chávez LA, Rendón-López CRR, Zepeda A, Silva-Adaya D, Del Razo LM, Gonsebatt ME. Neurological effects of inorganic arsenic exposure: altered cysteine/glutamate transport, NMDA expression and spatial memory impairment. Front Cell Neurosci. 2015;9:9–21.CrossRefGoogle Scholar
  162. Rodríguez-Barranco M, Lacasaña M, Aguilar-Garduño C, Alguacil J, Gil F, González-Alzaga B, Rojas-García A. Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: a systematic review and meta-analysis. Sci Total Environ. 2013;1(454–455):562–77.CrossRefGoogle Scholar
  163. Roels HA, Bowler RM, Kim Y, Claus Henn B, Mergler D, Hoet P, Gocheva VV, Bellinger DC, Wright RO, Harris MG, Chang Y, Bouchard MF, Riojas-Rodriguez H, Menezes-Filho JA, Tellez-Rojo MM. Manganese exposure and cognitive deficits: a growing concern for manganese neurotoxicity. Neurotoxicology. 2012;33:872–80.PubMedCrossRefGoogle Scholar
  164. Roneya N, Colman J. Interaction profile for lead, manganese, zinc, and copper. Environ Toxicol Pharmacol. 2004;18:231–4.CrossRefGoogle Scholar
  165. Rosado JL, Ronquillo D, Kordas K, Rojas O, Alatorre J, Lopez P, Garcia-Vargas G, Caamaño MC, Cebrián ME, Stoltzfus RJ. Arsenic exposure and cognitive performance in Mexican schoolchildren. Environ Health Perspect. 2007;115(9):1371–5.PubMedPubMedCentralCrossRefGoogle Scholar
  166. Rubio-Osornio M, Montes S, Heras-Romero Y, Guevara J, Rubio C, Aguilera P, Rivera-Mancia S, Floriano-Sánchez E, Monroy-Noyola A, Ríos C. Induction of ferroxidase enzymatic activity by copper reduces MPP+−evoked neurotoxicity in rats. Neurosci Res. 2013;75:250–5.PubMedCrossRefGoogle Scholar
  167. Rush T, Hjelmhaug J, Lobner D. Effects of chelators on mercury, iron, and lead neurotoxicity in cortical culture. Neurotoxicology. 2009;30:47–51.PubMedCrossRefGoogle Scholar
  168. Sahin G, Varol I, Temizer A, Benli K, Demirdamar R, Duru S. Determination of aluminum levels in the kidney, liver, and brain of mice treated with aluminum hydroxide. Biol Trace Elem Res. 1994;41(1–2):129–35.PubMedCrossRefGoogle Scholar
  169. Sánchez-Peña LC, Petrosyan P, Morales M, González NB, Gutiérrez-Ospina G, Del Razo LM, Gonsebatt ME. Arsenic species, AS3MT amount, and AS3MT gene expression in different brain regions of mouse exposed to arsenite. Environ Res. 2010;110(5):428–34.PubMedCrossRefGoogle Scholar
  170. Santamaria AB. Manganese exposure, essentiality & toxicity. Indian J Med Res. 2008;128:484–500.PubMedGoogle Scholar
  171. Scheiber IF, Mercer JFB, Dringen R. Metabolism and functions of copper in brain. Prog Neurobiol. 2014;116:33–57.PubMedCrossRefGoogle Scholar
  172. Schneider SA. Neurodegenerations with brain iron accumulation. Parkinsonism Rel Disord. 2016;22:21–5.CrossRefGoogle Scholar
  173. Sensi SL, Jeng JM. Rethinking the excitotoxic ionic milieu: the emerging role of Zn(2+) in ischemic neuronal injury. Curr Mol Med. 2004;4(2):87–111.PubMedCrossRefGoogle Scholar
  174. Sensi SL, Yin HZ, Weiss JH. AMPA/kainate receptor-triggered Zn2+ entry into cortical neurons induces mitochondrial Zn2+ uptake and persistent mitochondrial dysfunction. Eur J Neurosci. 2000;12:3813–8.PubMedCrossRefGoogle Scholar
  175. Sethi P, Jyoti A, Hussain E, Sharma D. Curcumin attenuates aluminium-induced functional neurotoxicity in rats. Pharmacol Biochem Behav. 2009;93:31–9.PubMedCrossRefGoogle Scholar
  176. Shi LZ, Zheng W. Early lead exposure increases the leakage of the blood–cerebrospinal fluid barrier, in vitro. Hum Exp Toxicol. 2007;26(3):159–67.PubMedPubMedCentralCrossRefGoogle Scholar
  177. Shukla GS, Hussain T, Chandra SV. Possible role of regional superoxide dismutase activity and lipid peroxide levels in cadmium neurotoxicity: in vivo and in vitro studies in growing rats. Life Sci. 1987;41(19):2215–21.PubMedCrossRefGoogle Scholar
  178. Shukla GS and Chandra SV. Concurrent exposure to lead, manganese, and cadmium and their distribution to various brain regions, liver, kidney, and testis of growing rats. Archives of Environ Contam Toxicol. 1987; 16(3):303–310.Google Scholar
  179. Shukla A, Shukla GS, Srimal RC. Cadmium-induced alterations in blood-brain barrier permeability and its possible correlation with decreased microvessel antioxidant potential in rat. Hum Exp Toxicol. 1996;15(5):400–5.PubMedCrossRefGoogle Scholar
  180. Shy CM. Epidemiological studies of neurotoxic, reproductive, and carcinogenic effects of complex mixtures. Environ Health Perspect. 1993;101(4):183–8.PubMedPubMedCentralCrossRefGoogle Scholar
  181. Simmons JE. Chemical mixtures: challenge for toxicology and risk assessment. Toxicology. 1995;105:11–9.Google Scholar
  182. Simmons-Willis TA, Koh AS, Clarkson TW, Ballatori N. Transport of a neurotoxicant by molecular mimicry : the methylmercury-L-cysteine complex is a substrate for human L-type large neutral amino acid transporter (LAT) 1 and LAT2. Biochem J. 2002;367:239–46.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Sinczuk-Walczaki H, Szymczak M, Razniewska G, Matczak W, Szymczak W. Effects of occupational exposure to aluminium on nervous system: clinical and electroencephalographic findings. Int J Occup Med Environ Health. 2003;16(4):301–10.Google Scholar
  184. Singh T, Goel RK. Neuroprotective effect of Allium cepa L. in aluminium chloride induced neurotoxicity. Neurotoxicology. 2015;49:1–7.PubMedCrossRefGoogle Scholar
  185. Skjørringe T, Burkhart A, Johnsen KB, Moos T. Divalent metal transporter 1 (DMT1) in the brain: implications for a role in iron transport at the blood-brain barrier, and neuronal and glial pathology. Front Mol Neurosci. 2015;8(19):1–13.Google Scholar
  186. Song H, Zheng G, Liu Y, Shen X-F, Zhao Z-H, Aschner M, Luo W-J, Chen J-Y. Cellular uptake of lead in the blood-cerebrospinal fluid barrier: novel roles of Connexin 43 hemichannel and its down-regulations via Erk phosphorylation. Toxicol Appl Pharmacol. 2016;15(297):1–11.CrossRefGoogle Scholar
  187. Spurgeon DJ, Jones OAH, Dorne J-L, Svendsen C, Swain S, Stürzenbaum SR. Systems toxicology approaches for understanding the joint effects of environmental chemical mixtures. Sci Total Environ. 2010;408:3725–34.PubMedCrossRefGoogle Scholar
  188. Strak E, Ellinger I, Balthasar C, Scheinast M, Schatz J, Szattler T, Bleichert S, Saleh L, Knöfler M, Zeisler H, Hengstschläger M, Rosner M, Salzer H, Gundacker C. Mercury toxicokinetics of the healthy human term placenta involve amino acid transporters and ABC transporters. Toxicology. 2016;340:34–42.CrossRefGoogle Scholar
  189. Struys-Ponsar C, Kerkhofs A, Gauthier A, Soffié M, van den Bosch de Aguilar P. Effects of aluminum exposure on behavioral parameters in the rat. Pharmacol Biochem Behav. 1997;56(4):643–8.PubMedCrossRefGoogle Scholar
  190. Szewczyk B. Zinc homeostasis and neurodegenerative disorders. Front Aging Neurosci. 2013;5:33.PubMedPubMedCentralCrossRefGoogle Scholar
  191. Tallkvist J, Bowlus CL, Lonnerdal B. DMT1 gene expression and cadmium absorption in human absorptive enterocytes. Toxicol Lett. 2001;122:171–7.PubMedCrossRefGoogle Scholar
  192. Tiffany-Castiglioni E, Hong S, Qian Y, Tang Y, Donnelly KC. In vitro models for assessing neurotoxicity of mixtures. Neurotoxicology. 2006;27:835–9.PubMedCrossRefGoogle Scholar
  193. Tjälve H, Henriksson J. Uptake of metals in the brain via olfactory pathways. Neurotoxicology. 1999;20(2–3):181–95.PubMedGoogle Scholar
  194. Tougu V, Tiiman A, Palumaa P. Interactions of Zn(II) and cu(II) ions with Alzheimer’s amyloid-beta peptide metal ion binding, contribution to fibrillization and toxicity. Metallomics. 2011;3:250–61.PubMedCrossRefGoogle Scholar
  195. Vazquez M, Velez D, Devesa V, Puig S. Participation of divalent cation transporter DMT1 in the uptake of inorganic mercury. Toxicology. 2015;331:119–24.PubMedCrossRefGoogle Scholar
  196. von Stackelberg K. Guzy E, Chu T, Henn BC. Mixtures, metals, genes and pathways: a systematic review. Working paper prepared for: methods for research synthesis: a cross-disciplinary workshop. Harvard Center for Risk Analysis. 2013.Google Scholar
  197. Wagner GS, Tephly TR. A possible role of copper in the regulation of heme biosynthesis through ferrochelatase. Adv Exp Med Biol. 1975;58:343–54.PubMedCrossRefGoogle Scholar
  198. Walton JR. Aluminum disruption of calcium homeostasis and signal transduction resembles change that occurs in aging and Alzheimer’s disease. J Alzheimers Dis. 2012;29(2):255–73.PubMedGoogle Scholar
  199. Waalkes MP, Harvey MJ, Klaassen CD. Relative in vitro affinity of hepatic metallothionein for metals. Toxicol Lett. 1984; 20(1):33-9.Google Scholar
  200. Wang G, Fowler BA. Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic. Toxicol Appl Pharmacol. 2008;233:92–9.PubMedCrossRefGoogle Scholar
  201. Wang Q, Luo W, Zheng W, Liu Y, Xu H, Zheng G, Dai Z, Zhang W, Chen Y, Chen J. Iron supplement prevents lead-induced disruption of the blood–brain barrier during rat development. Toxicol Appl Pharmacol. 2007;219(1):33–41.PubMedCrossRefGoogle Scholar
  202. Wang Q, Luo W, Zhang W, Liu M, Song H, Chen J. Involvement of DMT1 +IRE in the transport of lead in an in vitro BBB model. Toxicol In Vitro. 2011;25:991–8.PubMedCrossRefGoogle Scholar
  203. Wang L, Wang X, Zhang S, Qu G, Liu S. A protective role of heme-regulated eIF2a kinase in cadmium-induced toxicity in erythroid cells. Food Chem Toxicol. 2013;62:880–91.PubMedCrossRefGoogle Scholar
  204. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13(10):1045–60.PubMedCrossRefGoogle Scholar
  205. Watanabe T, Hirano S. Metabolism of arsenic and its toxicological relevance. Arch Toxicol. 2013;87(6):969–79.PubMedCrossRefGoogle Scholar
  206. Weidenhamer JD, Lobunski PA, Kuepouo G, Corbin RW, Gottesfeld P. Lead exposure from aluminum cookware in Cameroon. Sci Total Environ. 2014;496:339–47.PubMedCrossRefGoogle Scholar
  207. Weiss B. Economic implications of manganese neurotoxicity. Neurotoxicology. 2006;27:362–8.PubMedCrossRefGoogle Scholar
  208. Wenting L, Ping L, Haitao J, Meng Q, Xiaofei R. Therapeutic effect of taurine against aluminum-induced impairment on learning, memory and brain neurotransmitters in rats. Neurol Sci. 2014;35(10):1579–84.PubMedCrossRefGoogle Scholar
  209. Wester RC, Maibach HI, Sedik L, Melendres J, DiZio S, Wade M. In vitro percutaneous absorption of cadmium from water and soil into human skin. Fund Appl Toxicol. 1992;19(1):1–5.CrossRefGoogle Scholar
  210. Whittaker MH, Wang G, Chen X-Q, Lipsky M, Smith D, Gwiazda R, Fowler BA. Exposure to Pb, Cd, and As mixtures potentiates the production of oxidative stress precursors: 30-day, 90-day, and 180-day drinking water studies in rats. Toxicol Appl Pharmacol. 2010;254(2):154–66.Google Scholar
  211. Wills MR, Hewitt CD, Sturgill BC, et al. Long-term oral or intravenous aluminum administration in rabbits I. Renal and hepatic changes. Ann Clin Lab Sci. 1993;23(1):1–16.PubMedGoogle Scholar
  212. Witholt R, Gwiazda RH, Smith DR. The neurobehavioral effects of subchronic manganese exposure in the presence and absence of pre-parkinsonism. Neurotoxicol Teratol. 2000;22:851–61.PubMedCrossRefGoogle Scholar
  213. Woods JS. Porphyrin metabolism as indicator of metal exposure and toxicity. In: Goyer RA, Cherian MG, editors. Handbook of experimental pharmacology. Vol. 115. Chap. 2. Toxicology of metals, biochemical aspects. Berlin: Springer; 1995. p. 19–52.Google Scholar
  214. Woods JS. Altered porphyrin metabolism as a biomarker of mercury exposure and toxicity. Can J Physiol Pharmacol. 1996;74:210–5.PubMedGoogle Scholar
  215. Woods JS, Southern MR. Studies on the etiology of trace metal-induced porphyria: effect of porphyrinogenic metals on coproporphyrinogen oxidase in rat liver and kidney. Toxicol Appl Pharmacol. 1989;97:183–90.PubMedCrossRefGoogle Scholar
  216. Woods JS, Eaton DL, Lukens CB. Studies on porphyrin metabolism in the kidney. Effects of trace metals and glutathione of renal uroporphyrinogen decarboxylase. Mol Pharmacol. 1984;26:336–41.PubMedGoogle Scholar
  217. Woods JS, Bowers MA, Davis HA. Urinary porphyrin profiles as biomarkers of trace metal exposure and toxicity: studies on urinary porphyrin excretion patterns in rats during prolonged exposure to methyl mercury. Toxicol Appl Pharmacol. 1991;110:464–76.PubMedCrossRefGoogle Scholar
  218. Woods JS, Martin MD, Leroux BG, DeRouen TA, Bernardo MF, Luis HS, Leitão JG, Simmonds PL, Rue TC. Urinary porphyrin excretion in normal children and adolescents. Clin Chim Acta. 2009;405:104–9.PubMedPubMedCentralCrossRefGoogle Scholar
  219. Wright RO, Baccarelli A. Metals and neurotoxicology. J Nutr. 2007;137(12):2809–13.Google Scholar
  220. Yang XF, Han QG, Liu DY, Fan GY, Ma JY, Wang ZL. Microstructure and ultrastructure alterations in the pallium of immature mice exposed to cadmium. Biol Trace Elem Res. 2016;1–7.Google Scholar
  221. Yasui M, Kihira T, Ota K. Calcium, magnesium and aluminum concentrations in Parkinson’s disease. Neurotoxicology. 1992;13:593–600.PubMedGoogle Scholar
  222. Yasuno T, Okamoto H, Nagai M, Kimura S, Yamamoto T, Nagano K, Furubayashi T, Yoshikawa Y, Yasui H, Katsumi H, Sakane T, Yamamoto A. The disposition and intestinal absorption of zinc in rats. Eur J Pharm Sci. 2011;44:410–5.PubMedCrossRefGoogle Scholar
  223. Yen Le TT, Vijver MG, Kinraide TB, Peijnenburg SWJGM, Hendriks AJ. Modelling metal interactions and metal toxicity to lettuce Lactuca sativa following mixture exposure (Cu2+-Zn2+ and Cu2+-Ag+). Environ Pollut. 2013;176:185–92.CrossRefGoogle Scholar
  224. Yokel RA. Blood-brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration. J Alzheimers Dis. 2006;10:223–53.PubMedCrossRefGoogle Scholar
  225. Zheng W. Toxicology of choroid plexus: special reference to metal-induced neurotoxicities. Microsc Res Tech. 2001;52(1):89–103.PubMedPubMedCentralCrossRefGoogle Scholar
  226. Zheng W, Monnot AD. Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacol Ther. 2012;133(2):177–88.PubMedCrossRefGoogle Scholar
  227. Zheng W, Perry DF, Nelson DL, Aposhian HV. Protection of cerebrospinal fluid against toxic metals by the choroid plexus. FASEB J. 1991;5:2188–93.PubMedGoogle Scholar
  228. Zheng W, Aschner M, Ghersi-Egeac J-F. Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicol Appl Pharmacol. 2003;192:1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  229. Zheng G, Zhang J, Xuc Y, Shen X, Song H, Jing J, Luo W, Zheng W, Chen J. Involvement of CTR1 and ATP7A in lead (Pb)-induced copper (Cu)accumulation in choroidal epithelial cells. Toxicol Lett. 2014;225:110–8.PubMedCrossRefGoogle Scholar
  230. Zhi D, Tao AIJ, Fang HJ, Sun RB, Shi Y, Wang LL, Wang Q. Influence of iron supplementation on DMT1 (IRE)-induced transport of lead by brain barrier systems in vivo. Biomed Environ Sci. 2015;28(9):651–9.Google Scholar
  231. Zhou F, Chen Y, Fan G, Feng C, Dub G, Zhu G, Li Y, Jiao H, Guan L, Wang Z. Lead-induced iron overload and attenuated effects of ferroportin 1 overexpression in PC12 cells. Toxicol In Vitro. 2014;28:1339–48.PubMedCrossRefGoogle Scholar
  232. Zhu L, Ji X-J, Wang H-D, Pan H, Chen M, Lu T-J. Zinc neurotoxicity to hippocampal neurons in vitro induces ubiquitin conjugation that requires p38 activation. Brain Res. 2012;1438:1–7.PubMedCrossRefGoogle Scholar
  233. Zhu G, Fan G, Feng C, Li Y, Chen Y, Zhou F, Du G, Jiao H, Liu Z, Xiao X, Lin F, Yand J. The effect of lead exposure on brain iron homeostasis and the expression of DMT1/FP1 in the brain in developing and aged rats. Toxicol Lett. 2013;216:108–23.PubMedCrossRefGoogle Scholar
  234. Zhu H, Jia Y, Cao H, Meng F, Liu X. Biochemical and histopathological effects of subchronic oral exposure of rats to a mixture of five toxic elements. Food Chem Toxicol. 2014;71:166–75.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • V. M. Andrade
    • 1
  • M. Aschner
    • 2
  • A. P. Marreilha dos Santos
    • 1
    Email author
  1. 1.Research Institute for Medicines (iMed.ULisboa), Faculty of PharmacyUniversidade de LisboaLisboaPortugal
  2. 2.Department of Molecular PharmacologyAlbert Einstein College of MedicineBronxUSA

Personalised recommendations