Uranium and the Central Nervous System: What Should We Learn from Recent New Tools and Findings?

  • Céline DinocourtEmail author
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 18)


Increasing industrial and military use of uranium has led to environmental pollution, which may result in uranium reaching the brain and causing cerebral dysfunction. A recent literature review has discussed data published over the last 10 years on uranium and its effects on brain function (Dinocourt C, Legrand M, Dublineau I, et al., Toxicology 337:58–71, 2015). New models of uranium exposure during neonatal brain development and the emergence of new technologies (omics and epigenetics) are of value in identifying new specific targets of uranium. Here we review the latest studies of neurogenesis, epigenetics, and metabolic dysfunctions and the identification of new biomarkers used to establish potential pathophysiological states of neurodevelopmental and neurodegenerative diseases.


Omics Epigenetics Neurogenesis Brain Uranium 



We thank Christelle Adam-Guillermin and Maamar Souidi for their critical reading, specifically on epigenetic and metabolic pathways, of the manuscript.


  1. Abou-Donia MB, Dechkovskaia AM, Goldstein LB, et al. Uranyl acetate-induced sensorimotor deficit and increased nitric oxide generation in the central nervous system in rats. Pharmacol Biochem Behav. 2002;72:881–90.CrossRefPubMedGoogle Scholar
  2. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for Uranium. Atlanta: U.S. Department of Health and Human Services, Public Health Service; 2013.Google Scholar
  3. Albina ML, Bellés M, Linares V, et al. Restraint stress does not enhance the uranium-induced developmental and behavioral effects in the offspring of uranium-exposed male rats. Toxicology. 2005;215:69–79.CrossRefPubMedGoogle Scholar
  4. Altman J, Bayer SA. Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J Comp Neurol. 1990;301(3):365–81.CrossRefPubMedGoogle Scholar
  5. Barillet S, Adam C, Palluel O, et al. Bioaccumulation, oxidative stress, and neurotoxicity in Danio rerio exposed to different isotopic compositions of uranium. Environ Toxicol Chem. 2007;26:497–505.CrossRefPubMedGoogle Scholar
  6. Barillet S, Adam-Guillermin C, Palluel O, et al. Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure. Environ Pollut. 2011;159:495–502.CrossRefPubMedGoogle Scholar
  7. Bayer SA. Development of the hippocampal region in the rat. II. Morphogenesis during embryonic and early postnatal life. J Comp Neurol. 1980;190(1):115–34.CrossRefPubMedGoogle Scholar
  8. Bensoussan H, Grancolas L, Dhieux-Lestaevel B, et al. Heavy metal uranium affects the brain cholinergic system in rat following sub-chronic and chronic exposure. Toxicology. 2009;261:59–67.CrossRefPubMedGoogle Scholar
  9. Bleise A, Danesi PR, Burkart W. Properties, use and health effects of depleted uranium (DU): a general overview. J Environ Radioact. 2003;64:93–112.CrossRefPubMedGoogle Scholar
  10. Briner W, Abboud B. Behavior of juvenile mice chronically exposed to depleted uranium. In: Khassanova L, Collery P, Maymard I, Khassanova Z, Etienne JC, editors. Metal ions in biology and medicine. Paris: John Libby Eurotext; 2002. p. 353–6.Google Scholar
  11. Briner W, Davis D. Lipid oxidation and behavior are correlated in depleted uranium exposed mice. In: Khassanova L, Collery P, Maymard I, Khassanova Z, Etienne JC, editors. Metal ions in biology and medicine. Paris: John Libby Eurotext; 2002. p. 59–63.Google Scholar
  12. Briner W, Murray J. Effects of short-term and long-term depleted uranium exposure on open-field behavior and brain lipid oxidation in rats. Neurotoxicol Teratol. 2005;27:135–44.CrossRefPubMedGoogle Scholar
  13. Bussy C, Lestaevel P, Dhieux B, et al. Chronic ingestion of uranyl nitrate perturbs acetylcholinesterase activity and monoamine metabolism in male rat brain. Neurotoxicology. 2006;27:245–52.CrossRefPubMedGoogle Scholar
  14. Ceccatelli S, Bose R, Edoff K, et al. Long-lasting neurotoxic effects of exposure to methylmercury during development. J Intern Med. 2013;273(5):490–7.CrossRefPubMedGoogle Scholar
  15. Cheng TF, Choudhuri S, Muldoon-Jacobs K. Epigenetic targets of some toxicologically relevant metals: a review of the literature. J Appl Toxicol. 2012;32:643–53.CrossRefPubMedGoogle Scholar
  16. Dinocourt C, Stefani J et al. Reduced carbachol-induced beta/gamma oscillations in CA3 region of hippocampus after post-natal contamination of uranium in adult rat. Meeting abstract, Neurosciences, Washington, DC. 2014. November 2014.Google Scholar
  17. Dinocourt C, Legrand M, Dublineau I, et al. The neurotoxicology of uranium. Toxicology. 2015;337:58–71.CrossRefPubMedGoogle Scholar
  18. Dinocourt C, et al. Chronic exposure to uranium from gestation: Effects on behavior and neurogenesis in adulthood. Int J Environ Res Public Health. 2017;14(5):536.CrossRefPubMedCentralGoogle Scholar
  19. Domingo JL. Reproductive and developmental toxicity of natural and depleted uranium: a review. Reprod Toxicol. 2001;15:603–9.CrossRefPubMedGoogle Scholar
  20. Dublineau I, Souidi M, Gueguen Y, et al. Unexpected lack of deleterious effects of uranium on physiological systems following a chronic oral intake in adult rat. Biomed Res Int. 2014; doi: 10.1155/2014/181989.
  21. Elmhiri G, Gloaguen C, Kereselidze D, et al. Multigenerational effects of chronic low-dose natural uranium contamination: epigenetic inheritance of methylation signature. Toxicol Lett. 2016;259S:S73–S247.
  22. Franco R, Schoneveld O, Georgakilas AG, et al. Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett. 2008;266(1):6–11.CrossRefPubMedGoogle Scholar
  23. Gapp K, Jawaid A, Sarkies P, et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci. 2014;17(5):667–9.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ghosh S, Kumar A, Pandey BN, et al. Acute exposure of uranyl nitrate causes lipid peroxidation and histopathological damage in brain and bone of Wistar rat. J Environ Pathol Toxicol Oncol. 2007;26:255–61.CrossRefPubMedGoogle Scholar
  25. Gombeau K, Pereira S, Ravanat JL, et al. Depleted uranium induces sex- and tissue-specific methylation patterns in adult zebrafish. J Environ Radioact. 2016;154:25–33.CrossRefPubMedGoogle Scholar
  26. Gonzalez-Riano C, Garcia A, Barbas C. Metabolomics studies in brain tissue: a review. J Pharm Biomed Anal. 2016;130:141–68.CrossRefPubMedGoogle Scholar
  27. Gotz M, Huttner WB. The cell biology of neurogenesis. Nature reviews. Mol Cell Biol. 2005;6(10):777–88.Google Scholar
  28. Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014;13:330–8.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Grison S, Favé G, Maillot M, et al. Metabolomics identifies a biological response to chronic low-dose natural uranium contamination in urine samples. Metabolomics. 2013;9(6):1168–80.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Grison S, Favé G, Maillot M, et al. Metabolomics reveals dose effects of low-dose chronic exposure to uranium in rats: identification of candidate biomarkers in urine samples. Metabolomics. 2016;12(10):154.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hirst M, Marra MA. Next generation sequencing based approaches to epigenomics. Brief Funct Genomics. 2010;9(5–6):455–65.CrossRefPubMedGoogle Scholar
  32. Hon GC, Hawkins RD, Caballero OL, et al. Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res. 2012;22(2):246–58.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Houpert P, Frelon S, Lestaevel P, et al. Parental exposure to enriched uranium induced delayed hyperactivity in rat offspring. Neurotoxicology. 2007;28:108–13.CrossRefPubMedGoogle Scholar
  34. Huang D, Zhang Y, Qi Y, et al. Global DNA hypomethylation, rather than reactive oxygen species (ROS), a potential facilitator of cadmium-stimulated K562 cell proliferation. Toxicol Lett. 2008;179(1):43–7.CrossRefPubMedGoogle Scholar
  35. Jiang G, Aschner M. Neurotoxicity of depleted uranium: reasons for increased concern. Biol Trace Elem Res. 2006;110:1–17.CrossRefPubMedGoogle Scholar
  36. Kaddurah-Daouk R, Krishnan KR. Metabolomics: a global biochemical approach to the study of central nervous system diseases. Neuropsychopharmacology. 2009;34:173–86.CrossRefPubMedGoogle Scholar
  37. Legrand M, Elie C, Stefani J, et al. Cell proliferation and cell death are disturbed during prenatal and postnatal brain development after uranium exposure. Neurotoxicology. 2016a;52:34–45.CrossRefPubMedGoogle Scholar
  38. Legrand M, Lam S, Anselme I et al. Exposure to depleted uranium during development affects neuronal differentiation in the hippocampal dentate gyrus and induces depressive-like behavior in offspring. Neurotoxicology. 2016b. Scholar
  39. Lerebours A, Gonzalez P, Adam C, et al. Comparative analysis of gene expression in brain, liver, skeletal muscles, and gills of zebrafish (Danio rerio) exposed to environmentally relevant waterborne uranium concentrations. Environ Toxicol Chem. 2009;28:1271–8.CrossRefPubMedGoogle Scholar
  40. Lerebours A, Adam-Guillermin C, Brèthes D, et al. Mitochondrial energetic metabolism perturbations in skeletal muscles and brain of zebrafish (Danio rerio) exposed to low concentrations of waterborne uranium. Aquat Toxicol. 2010;100(1):66–74.CrossRefPubMedGoogle Scholar
  41. Lestaevel P, Romero E, Dhieux B, et al. Different pattern of brain pro-/anti-oxidant activity between depleted and enriched uranium in chronically exposed rats. Toxicology. 2009;258:1–9.CrossRefPubMedGoogle Scholar
  42. Lestaevel P, Bensoussan H, Dhieux B, et al. Cerebral cortex and hippocampus respond differently after post-natal exposure to uranium. J Toxicol Sci. 2013;38:803–11.CrossRefPubMedGoogle Scholar
  43. Lestaevel P, Dhieux B, Delissen O, et al. Uranium modifies or not behavior and antioxidant status in the hippocampus of rats exposed since birth. J Toxicol Sci. 2015;40:99–107.CrossRefPubMedGoogle Scholar
  44. Lestaevel P, Grison S, Favé G, et al. Assessment of the central effects of natural uranium via behavioural performances and the cerebrospinal fluid metabolome. Neural Plast. 2016; doi: 10.1155/2016/9740353.
  45. Linares V, Sanchez DJ, Belles M, et al. Pro-oxidant effects in the brain of rats concurrently exposed to uranium and stress. Toxicology. 2007;236:82–91.CrossRefPubMedGoogle Scholar
  46. Linney E, Upchurch L, Donerly S. Zebrafish as a neurotoxicological model. Neurotoxicol Teratol. 2004;26(6):709–18.CrossRefPubMedGoogle Scholar
  47. Maruyama W, Abe T, Tohgi H, et al. A dopaminergic neurotoxin, (R)-N-methylsalsolinol, increases in parkinsonian cerebrospinal fluid. Ann Neurol. 1996;40:119–22.CrossRefPubMedGoogle Scholar
  48. Miller AC, Stewart M, Rivas R. DNA methylation during depleted uranium-induced leukemia. Biochimie. 2009;91:1328–30.CrossRefPubMedGoogle Scholar
  49. Mouradian MM. MicroRNAs in Parkinson’s disease. Neurobiol Dis. 2012;46:279–84.CrossRefPubMedGoogle Scholar
  50. Naoi M, Maruyama W, Dostert P, et al. N-methyl-(R)-salsolinol as a dopaminergic neurotoxin: from an animal model to an early marker of Parkinson’s disease. J Neural Transm. 1997;50(Suppl):89–105.CrossRefGoogle Scholar
  51. Paquet F, Houpert P, Blanchardon E, et al. Accumulation and distribution of uranium in rats after chronic exposure by ingestion. Health Phys. 2006;90:139–47.CrossRefPubMedGoogle Scholar
  52. Paternain JL, Domingo JL, Ortega A, et al. The effects of uranium on reproduction, gestation, and postnatal survival in mice. Ecotoxicol Environ Saf. 1989;17:291–6.CrossRefPubMedGoogle Scholar
  53. Pellmar TC, Keyser DO, Emery C, et al. Electrophysiological changes in hippocampal slices isolated from rats embedded with depleted uranium fragments. Neurotoxicology. 1999;20:785–92.PubMedGoogle Scholar
  54. Petitot F, Frelon S, Chambon C, et al. Proteome changes in rat serum after a chronic ingestion of enriched uranium: toward a biological signature of internal contamination and radiological effect. Toxicol Lett. 2016;257:44–59.CrossRefPubMedGoogle Scholar
  55. Rudenko A, Tsai LH. Epigenetic regulation in memory and cognitive disorders. Neuroscience. 2014;264:51–63.CrossRefPubMedGoogle Scholar
  56. Su S, Jin Y, Zhang W, et al. Aberrant promoter methylation of p16(INK4a) and O(6)-methylguanine-DNA methyltransferase genes in workers at a Chinese uranium mine. J Occup Health. 2006;48(4):261–6.CrossRefPubMedGoogle Scholar
  57. Takiguchi M, Achanzar WE, Qu W, et al. Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res. 2003;286(2):355–65.CrossRefPubMedGoogle Scholar
  58. Tomsig JL, Suszkiw JB. Metal selectivity of exocytosis in alpha-toxin-permeabilized bovine chromaffin cells. J Neurochem. 1996;66:644–50.CrossRefPubMedGoogle Scholar
  59. Valinluck V, Tsai HH, Rogstad DK, et al. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 2004;32(14):4100–8.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institut de Radioprotection et de Sûreté Nucléaire (IRSN)Direction de la Stratégie du Développement et des Partenariats, Service Programmes et Stratégies scientifiquesFontenay-aux-RosesFrance

Personalised recommendations