Skip to main content

Copper and Alzheimer’s Disease

  • Chapter
  • First Online:
Neurotoxicity of Metals

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 18))

Abstract

Alzheimer’s disease (AD) is the most common form of adult neurode-generation and is characterised by progressive loss of cognitive function leading to death. The neuropathological hallmarks include extracellular amyloid plaque accumulation in affected regions of the brain, formation of intraneuronal neurofibrillary tangles, chronic neuroinflammation, oxidative stress, and abnormal biometal homeostasis. Of the latter, major changes in copper (Cu) levels and localisation have been identified in AD brain, with accumulation of Cu in amyloid deposits, together with deficiency of Cu in some brain regions. The amyloid precursor protein (APP) and the amyloid beta (Aβ) peptide both have Cu binding sites, and interaction with Cu can lead to potentially neurotoxic outcomes through generation of reactive oxygen species. In addition, AD patients have systemic changes to Cu metabolism, and altered Cu may also affect neuroinflammatory outcomes in AD. Although we still have much to learn about Cu homeostasis in AD patients and its role in disease aetiopathology, therapeutic approaches for regulating Cu levels and interactions with Cu-binding proteins in the brain are currently being developed. This review will examine how Cu is associated with pathological changes in the AD brain and how these may be targeted for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adlard PA, Cherny RA, Finkelstein DI, Gautier E, Robb E, Cortes M, et al. Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Aβ. Neuron. 2008;59(1):43–55.

    Article  CAS  PubMed  Google Scholar 

  • Ahuja A, Dev K, Tanwar RS, Selwal KK, Tyagi PK. Copper mediated neurological disorder: visions into amyotrophic lateral sclerosis, Alzheimer and Menkes disease. J Trace Elem Med Biol. 2015;29:11–23.

    Article  CAS  PubMed  Google Scholar 

  • Amaravadi R, Glerum DM, Tzagoloff A. Isolation of a cDNA encoding the human homolog of COX17, a yeast gene essential for mitochondrial copper recruitment. Hum Genet. 1997;99(3):329–33.

    Article  CAS  PubMed  Google Scholar 

  • Atwood CS, Moir RD, Huang X, Scarpa RC, Bacarra NME, Romano DM, et al. Dramatic aggregation of Alzheimer Aβ by Cu (II) is induced by conditions representing physiological acidosis. J Biol Chem. 1998;273(21):12817–26.

    Article  CAS  PubMed  Google Scholar 

  • Atwood CS, Scarpa RC, Huang X, Moir RD, Jones WD, Fairlie DP, et al. Characterization of copper interactions with alzheimer amyloid beta peptides: identification of an attomolar-affinity copper binding site on amyloid beta1-42. J Neurochem. 2000;75(3):1219–33.

    Article  CAS  PubMed  Google Scholar 

  • Ayton S, Lei P, Bush AI. Biometals and their therapeutic implications in Alzheimer’s disease. Neurotherapeutics. 2015;12(1):109–20.

    Article  CAS  PubMed  Google Scholar 

  • Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet (London, England). 2011;377(9770):1019–31.

    Article  Google Scholar 

  • Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE. A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation. J Neurosci. 2003;23(7):2665–74.

    CAS  PubMed  Google Scholar 

  • Barbusiński K. Fenton reaction-controversy concerning the chemistry. Ecolog Chem Eng Sci. 2009;16(3):347–58.

    Google Scholar 

  • Barnham KJ, McKinstry WJ, Multhaup G, Galatis D, Morton CJ, Curtain CC, et al. Structure of the Alzheimer’s disease amyloid precursor protein copper binding domain a regulator of neuronal copper homeostasis. J Biol Chem. 2003;278(19):17401–7.

    Article  CAS  PubMed  Google Scholar 

  • Barnham KJ, Haeffner F, Ciccotosto GD, Curtain CC, Tew D, Mavros C, et al. Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer’s disease beta-amyloid. FASEB J. 2004;18(12):1427–9.

    CAS  PubMed  Google Scholar 

  • Bayer TA, Schäfer S, Simons A, Kemmling A, Kamer T, Tepests R, et al. Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Aβ production in APP23 transgenic mice. Proc Natl Acad Sci. 2003;100(24):14187–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bucossi S, Ventriglia M, Panetta V, Salustri C, Pasqualetti P, Mariani S, et al. Copper in Alzheimer’s disease: a meta-analysis of serum,plasma, and cerebrospinal fluid studies. J Alzheimer’s Dis. 2011;24(1):175–85.

    CAS  Google Scholar 

  • Bush AI, Tanzi RE. Therapeutics for Alzheimer’s disease based on the metal hypothesis. Neurotherapeutics. 2008;5(3):421–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buxbaum JD, Thinakaran G, Koliatsos V, O’Callahan J, Slunt HH, Price DL, et al. Alzheimer amyloid protein precursor in the rat hippocampus: transport and processing through the perforant path. J Neurosci. 1998;18(23):9629–37.

    CAS  PubMed  Google Scholar 

  • Caragounis A, Du T, Filiz G, Laughton KM, Volitakis I, Sharples RA, et al. Differential modulation of Alzheimer’s disease amyloid beta-peptide accumulation by diverse classes of metal ligands. Biochem J. 2007;407(3):435–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cater MA, McInnes KT, Li Q-X, Volitakis I, La Fontaine S, Mercer JF, et al. Intracellular copper deficiency increases amyloid-β secretion by diverse mechanisms. Biochem J. 2008;412(1):141–52.

    Article  CAS  PubMed  Google Scholar 

  • Ceccom J, Coslédan F, Halley H, Francès B, Lassalle JM, Meunier B. Copper chelator induced efficient episodic memory recovery in a non-transgenic Alzheimer’s mouse model. PLoS One. 2012;7(8):e43105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron. 2001;30(3):665–76.

    Article  CAS  PubMed  Google Scholar 

  • Choi B-S, Zheng W. Copper transport to the brain by the blood-brain barrier and blood-CSF barrier. Brain Res. 2009;1248:14–21.

    Article  CAS  PubMed  Google Scholar 

  • Choo XY, Alukaidey L, White AR, Grubman A. Neuroinflammation and copper in Alzheimer’s disease. Int J Alzheimers Dis. 2013;2013:145345.

    PubMed  PubMed Central  Google Scholar 

  • Christensen MA, Zhou W, Qing H, Lehman A, Philipsen S, Song W. Transcriptional regulation of BACE1, the β-amyloid precursor protein β-secretase, by Sp1. Mol Cell Biol. 2004;24(2):865–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Citron M, Diehl TS, Gordon G, Biere AL, Seubert P, Selkoe DJ. Evidence that the 42-and 40-amino acid forms of amyloid β protein are generated from the β-amyloid precursor protein by different protease activities. Proc Natl Acad Sci. 1996;93(23):13170–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cottrell BA, Galvan V, Banwait S, Gorostiza O, Lombardo CR, Williams T, et al. A pilot proteomic study of amyloid precursor interactors in Alzheimer’s disease. Ann Neurol. 2005;58(2):277–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crouch PJ, Hung LW, Adlard PA, Cortes M, Lal V, Filiz G, et al. Increasing Cu bioavailability inhibits Abeta oligomers and tau phosphorylation. Proc Natl Acad Sci U S A. 2009;106(2):381–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuajungco MP, Goldstein LE, Nunomura A, Smith MA, Lim JT, Atwood CS, et al. Evidence that the β-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of Aβ by zinc. J Biol Chem. 2000;275(26):19439–42.

    Article  CAS  PubMed  Google Scholar 

  • Culotta VC, Klomp LW, Strain J, Casareno RLB, Krems B, Gitlin JD. The copper chaperone for superoxide dismutase. J Biol Chem. 1997;272(38):23469–72.

    Article  CAS  PubMed  Google Scholar 

  • Davies KM, Hare DJ, Cottam V, Chen N, Hilgers L, Halliday G, et al. Localization of copper and copper transporters in the human brain. Metallomics Integ Biometal Sci. 2013;5(1):43–51.

    Article  CAS  Google Scholar 

  • de Calignon A, Polydoro M, Suárez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, et al. Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron. 2012;73(4):685–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeWitt DA, Perry G, Cohen M, Doller C, Silver J. Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer’s disease. Exp Neurol. 1998;149(2):329–40.

    Article  CAS  PubMed  Google Scholar 

  • Di Vaira M, Bazzicalupi C, Orioli P, Messori L, Bruni B, Zatta P. Clioquinol, a drug for Alzheimer’s disease specifically interfering with brain metal metabolism: structural characterization of its zinc (II) and copper (II) complexes. Inorg Chem. 2004;43(13):3795–7.

    Article  PubMed  CAS  Google Scholar 

  • Dickson DW, Farlo J, Davies P, Crystal H, Fuld P, Yen S-H. Alzheimer’s disease. A double-labeling immunohistochemical study of senile plaques. Am J Pathol. 1988;132(1):86.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donnelly PS, Caragounis A, Du T, Laughton KM, Volitakis I, Cherny RA, et al. Selective intracellular release of copper and zinc ions from bis(thiosemicarbazonato) complexes reduces levels of Alzheimer disease amyloid-beta peptide. J Biol Chem. 2008;283(8):4568–77.

    Article  CAS  PubMed  Google Scholar 

  • Duncan C, White AR. Copper complexes as therapeutic agents. Metallomics. 2012;4(2):127–38.

    Article  CAS  PubMed  Google Scholar 

  • Filiz G, Price KA, Caragounis A, Du T, Crouch PJ, White AR. The role of metals in modulating metalloprotease activity in the AD brain. Eur Biophys J. 2008;37(3):315–21.

    Article  CAS  PubMed  Google Scholar 

  • Galeazzi L, Ronchi P, Franceschi C, Giunta S. In vitro peroxidase oxidation induces stable dimers of beta-amyloid (1-42) through dityrosine bridge formation. Amyloid. 1999;6(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  • Götz J, Chen F, Van Dorpe J, Nitsch R. Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Aβ42 fibrils. Science. 2001;293(5534):1491–5.

    Article  PubMed  Google Scholar 

  • Green MA, Klippenstein DL, Tennison JR. Copper(II) bis(thiosemicarbazone) complexes as potential tracers for evaluation of cerebral and myocardial blood flow with PET. J Nucl Med. 1988;29(9):1549–57.

    CAS  PubMed  Google Scholar 

  • Grossi C, Francese S, Casini A, Rosi MC, Luccarini I, Fiorentini A, et al. Clioquinol decreases amyloid-β burden and reduces working memory impairment in a transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis. 2009;17(2):423–40.

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge J. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984;219(1):1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegde ML, Bharathi P, Suram A, Venugopal C, Jagannathan R, Poddar P, et al. Challenges associated with metal chelation therapy in Alzheimer’s disease. J Alzheimers Dis. 2009;17(3):457–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heicklen-Klein A, Ginzburg I. Tau promoter confers neuronal specificity and binds Sp1 and AP-2. J Neurochem. 2000;75(4):1408–18.

    Article  CAS  PubMed  Google Scholar 

  • Henry W, Querfurth H, LaFerla F. Mechanisms of disease Alzheimer’s disease. New Engl J Med. 2010;362:329–44.

    Article  Google Scholar 

  • Higuchi M, Lee VM-Y, Trojanowski JQ. Tau and axonopathy in neurodegenerative disorders. NeuroMolecular Med. 2002;2(2):131–50.

    Article  CAS  PubMed  Google Scholar 

  • Hu M, Waring JF, Gopalakrishnan M, Li J. Role of GSK-3beta activation and alpha7 nAChRs in Abeta(1-42)-induced tau phosphorylation in PC12 cells. J Neurochem. 2008;106(3):1371–7.

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JD, Hanson GR, et al. Cu (II) potentiation of Alzheimer Aβ neurotoxicity correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem. 1999;274(52):37111–6.

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Atwood CS, Moir RD, Hartshorn MA, Tanzi RE, Bush AI. Trace metal contamination initiates the apparent auto-aggregation, amyloidosis, and oligomerization of Alzheimer’s Aβ peptides. J Biol Inorg Chem. 2004;9(8):954–60.

    Article  CAS  PubMed  Google Scholar 

  • Hung YH, Bush AI, Cherny RA. Copper in the brain and Alzheimer’s disease. J Biol Inorg Chem. 2010;15(1):61–76.

    Article  CAS  PubMed  Google Scholar 

  • Hung YH, Bush AI, La Fontaine S. Links between copper and cholesterol in Alzheimer’s disease. Front Physiol. 2013;4:111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011;283(2):65–87.

    Article  CAS  PubMed  Google Scholar 

  • Kaden D, Bush AI, Danzeisen R, Bayer TA, Multhaup G. Disturbed copper bioavailability in Alzheimer’s disease. Int J Alzheimers Dis. 2011;2011:345614.

    PubMed  PubMed Central  Google Scholar 

  • Kardos J, Kovacs I, Hajos F, Kalman M, Simonyi M. Nerve endings from rat brain tissue release copper upon depolarization. A possible role in regulating neuronal excitability. Neurosci Lett. 1989;103(2):139–44.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy T, Ghio AJ, Reed W, Samet J, Zagorski J, Quay J, et al. Copper-dependent inflammation and nuclear factor-kappaB activation by particulate air pollution. Am J Respir Cell Mol Biol. 1998;19(3):366–78.

    Article  CAS  PubMed  Google Scholar 

  • Kessler H, Bayer TA, Bach D, Schneider-Axmann T, Supprian T, Herrmann W, et al. Intake of copper has no effect on cognition in patients with mild Alzheimer’s disease: a pilot phase 2 clinical trial. J Neural Transm. 2008;115(8):1181–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khlistunova I, Biernat J, Wang Y, Pickhardt M, von Bergen M, Gazova Z, et al. Inducible expression of Tau repeat domain in cell models of tauopathy aggregation is toxic to cells but can be reversed by inhibitor drugs. J Biol Chem. 2006;281(2):1205–14.

    Article  CAS  PubMed  Google Scholar 

  • Klomp LW, Lin S-J, Yuan DS, Klausner RD, Culotta VC, Gitlin JD. Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis. J Biol Chem. 1997;272(14):9221–6.

    Article  CAS  PubMed  Google Scholar 

  • Kong G-W, Adams JJ, Cappai R, Parker MW. Structure of Alzheimer’s disease amyloid precursor protein copper-binding domain at atomic resolution. Acta Crystallogr Sect F: Struct Biol Cryst Commun. 2007;63(10):819–24.

    Article  CAS  Google Scholar 

  • Lannfelt L, Blennow K, Zetterberg H, Batsman S, Ames D, Harrison J, et al. Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 2008;7(9):779–86.

    Article  CAS  PubMed  Google Scholar 

  • Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science. 2001;293(5534):1487–91.

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Drouet V, Wu JW, Witter MP, Small SA, Clelland C, et al. Trans-synaptic spread of tau pathology in vivo. PLoS One. 2012;7(2):e31302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LoPresti P, Szuchet S, Papasozomenos SC, Zinkowski RP, Binder LI. Functional implications for the microtubule-associated protein tau: localization in oligodendrocytes. Proc Natl Acad Sci. 1995;92(22):10369–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Zheng Y-L, Wu D-M, Sun D-X, Shan Q, Fan S-H. Trace amounts of copper induce neurotoxicity in the cholesterol-fed mice through apoptosis. FEBS Lett. 2006;580(28–29):6730–40.

    Article  CAS  PubMed  Google Scholar 

  • Lue L-F, Kuo Y-M, Roher AE, Brachova L, Shen Y, Sue L, et al. Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol. 1999;155(3):853–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma QF, Li YM, Du JT, Kanazawa K, Nemoto T, Nakanishi H, et al. Binding of copper (II) ion to an Alzheimer’s tau peptide as revealed by MALDI-TOF MS, CD, and NMR. Biopolymers. 2005;79(2):74–85.

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Li Y, Du J, Liu H, Kanazawa K, Nemoto T, et al. Copper binding properties of a tau peptide associated with Alzheimer’s disease studied by CD, NMR, and MALDI-TOF MS. Peptides. 2006;27(4):841–9.

    Article  CAS  PubMed  Google Scholar 

  • Malm TM, Iivonen H, Goldsteins G, Keksa-Goldsteine V, Ahtoniemi T, Kanninen K, et al. Pyrrolidine dithiocarbamate activates Akt and improves spatial learning in APP/PS1 mice without affecting beta-amyloid burden. J Neurosci. 2007;27(14):3712–21.

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Ye J, Zhou S, Pi R, Dou J, Zang L, et al. The effects of chronic copper exposure on the amyloid protein metabolisim associated genes’ expression in chronic cerebral hypoperfused rats. Neurosci Lett. 2012;518(1):14–8.

    Article  CAS  PubMed  Google Scholar 

  • McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244(22):6049–55.

    CAS  PubMed  Google Scholar 

  • McGeer PL, Akiyama H, Itagaki S, McGeer EG. Immune system response in Alzheimer’s disease. Can J Neurol Sci. 1989;16(4 Suppl):516–27.

    Article  CAS  PubMed  Google Scholar 

  • Minghetti L. Role of inflammation in neurodegenerative diseases. Curr Opin Neurol. 2005;18(3):315–21.

    Article  CAS  PubMed  Google Scholar 

  • Moriwaki H, Osborne MR, Phillips DH. Effects of mixing metal ions on oxidative DNA damage mediated by a Fenton-type reduction. Toxicol In Vitro. 2008;22(1):36–44.

    Article  CAS  PubMed  Google Scholar 

  • Mot AI, Wedd AG, Sinclair L, Brown DR, Collins SJ, Brazier MW. Metal attenuating therapies in neurodegenerative disease. Expert Rev Neurother. 2011;11(12):1717–45.

    Article  PubMed  Google Scholar 

  • Myhre O, Utkilen H, Duale N, Brunborg G, Hofer T. Metal dyshomeostasis and inflammation in Alzheimer’s and Parkinson’s diseases: possible impact of environmental exposures. Oxidative Med Cell Longev. 2013;2013:726954.

    Article  CAS  Google Scholar 

  • Opazo CM, Greenough MA, Bush AI. Copper: from neurotransmission to neuroproteostasis. Front Aging Neurosci. 2014;6:143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perry G, Cash AD, Smith MA. Alzheimer disease and oxidative stress. Biomed Res Int. 2002;2(3):120–3.

    Google Scholar 

  • Pooler AM, Phillips EC, Lau DH, Noble W, Hanger DP. Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep. 2013;14(4):389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratico D. Evidence of oxidative stress in Alzheimer’s disease brain and antioxidant therapy: lights and shadows. Ann N Y Acad Sci. 2008;1147:70–8.

    Article  CAS  PubMed  Google Scholar 

  • Prince M, Wimo A, Guerchet M, Ali G, Wu Y, Prina M. World Alzheimer report 2015 [Internet]. London. 2015. Available from: http://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf

  • Reitz C. Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimers Dis. 2012;2012:369808.

    PubMed  PubMed Central  Google Scholar 

  • Rembach A, Hare DJ, Lind M, Fowler CJ, Cherny RA, McLean C, et al. Decreased copper in Alzheimer’s disease brain is predominantly in the soluble extractable fraction. Int J Alzheimers Dis. 2013;2013:623241.

    PubMed  PubMed Central  Google Scholar 

  • Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M, MacGregor L, et al. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol. 2003;60(12):1685–91.

    Article  PubMed  Google Scholar 

  • Rozemuller JM, Eikelenboom P, Pals ST, Stam FC. Microglial cells around amyloid plaques in Alzheimer’s disease express leucocyte adhesion molecules of the LFA-1 family. Neurosci Lett. 1989;101(3):288–92.

    Article  CAS  PubMed  Google Scholar 

  • Salustri C, Barbati G, Ghidoni R, Quintiliani L, Ciappina S, Binetti G, et al. Is cognitive function linked to serum free copper levels? A cohort study in a normal population. Clin Neurophysiol. 2010;121(4):502–7.

    Article  CAS  PubMed  Google Scholar 

  • Sayre LM, Perry G, Smith MA. Oxidative stress and neurotoxicity. Chem Res Toxicol. 2008;21(1):172–88.

    Article  PubMed  Google Scholar 

  • Scheiber IF, Mercer JF, Dringen R. Metabolism and functions of copper in brain. Prog Neurobiol. 2014;116:33–57.

    Article  CAS  PubMed  Google Scholar 

  • Schmalz G, Schuster U, Schweikl H. Influence of metals on IL-6 release in vitro. Biomaterials. 1998;19(18):1689–94.

    Article  CAS  PubMed  Google Scholar 

  • Schrag M, Mueller C, Oyoyo U, Smith MA, Kirsch WM. Iron, zinc and copper in the Alzheimer’s disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion. Prog Neurobiol. 2011;94(3):296–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001;81(2):741–66.

    CAS  PubMed  Google Scholar 

  • Shaffer LM, Dority MD, Gupta-Bansal R, Frederickson RC, Younkin SG, Brunden KR. Amyloid β protein (Aβ) removal by neuroglial cells in culture. Neurobiol Aging. 1995;16(5):737–45.

    Article  CAS  PubMed  Google Scholar 

  • Small DH, McLean CA. Alzheimer’s disease and the amyloid β protein. J Neurochem. 1999;73(2):443–9.

    Article  CAS  PubMed  Google Scholar 

  • Smith DP, Smith DG, Curtain CC, Boas JF, Pilbrow JR, Ciccotosto GD, et al. Copper-mediated amyloid-β toxicity is associated with an intermolecular histidine bridge. J Biol Chem. 2006;281(22):15145–54.

    Article  CAS  PubMed  Google Scholar 

  • Smith DP, Ciccotosto GD, Tew DJ, Fodero-Tavoletti MT, Johanssen T, Masters CL, et al. Concentration dependent Cu2+ induced aggregation and Dityrosine formation of the Alzheimer’s disease amyloid-β peptide. Biochemistry. 2007;46(10):2881–91.

    Article  CAS  PubMed  Google Scholar 

  • Song I-S, Chen HH, Aiba I, Hossain A, Liang ZD, Klomp LW, et al. Transcription factor Sp1 plays an important role in the regulation of copper homeostasis in mammalian cells. Mol Pharmacol. 2008;74(3):705–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Squitti R. Copper dysfunction in Alzheimer’s disease: from meta-analysis of biochemical studies to new insight into genetics. J Trace Elem Med Biol. 2012;26(2):93–6.

    Article  CAS  PubMed  Google Scholar 

  • Squitti R. Copper subtype of Alzheimer’s disease (AD): meta-analyses, genetic studies and predictive value of non-ceruloplasmim copper in mild cognitive impairment conversion to full AD. J Trace Elem Med Biol. 2014;28(4):482–5.

    Article  CAS  PubMed  Google Scholar 

  • Squitti R, Pasqualetti P, Dal Forno G, Moffa F, Cassetta E, Lupoi D, et al. Excess of serum copper not related to ceruloplasmin in Alzheimer disease. Neurology. 2005;64(6):1040–6.

    Article  CAS  PubMed  Google Scholar 

  • Squitti R, Ventriglia M, Barbati G, Cassetta E, Ferreri F, Dal Forno G, et al. ‘Free’ copper in serum of Alzheimer’s disease patients correlates with markers of liver function. J Neural Transm. 2007;114(12):1589–94.

    Article  CAS  PubMed  Google Scholar 

  • Squitti R, Quattrocchi CC, Salustri C, Rossini PM. Ceruloplasmin fragmentation is implicated in ‘free’ copper deregulation of Alzheimer disease. Prion. 2008;2(1):23–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Squitti R, Bressi F, Pasqualetti P, Bonomini C, Ghidoni R, Binetti G, et al. Longitudinal prognostic value of serum “free” copper in patients with Alzheimer disease. Neurology. 2009;72(1):50–5.

    Article  CAS  PubMed  Google Scholar 

  • Squitti R, Ghidoni R, Siotto M, Ventriglia M, Benussi L, Paterlini A, et al. Value of serum nonceruloplasmin copper for prediction of mild cognitive impairment conversion to Alzheimer disease. Ann Neurol. 2014;75(4):574–80.

    Article  CAS  PubMed  Google Scholar 

  • Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow E-M. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol. 2002;156(6):1051–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su X-Y, Wu W-H, Huang Z-P, Hu J, Lei P, Yu C-H, et al. Hydrogen peroxide can be generated by tau in the presence of Cu (II). Biochem Biophys Res Commun. 2007;358(2):661–5.

    Article  CAS  PubMed  Google Scholar 

  • Treiber C, Simons A, Strauss M, Hafner M, Cappai R, Bayer TA, et al. Clioquinol mediates copper uptake and counteracts copper efflux activities of the amyloid precursor protein of Alzheimer’s disease. J Biol Chem. 2004;279(50):51958–64.

    Article  CAS  PubMed  Google Scholar 

  • Trombley PQ, Shepherd GM. Differential modulation by zinc and copper of amino acid receptors from rat olfactory bulb neurons. J Neurophysiol. 1996;76(4):2536–46.

    CAS  PubMed  Google Scholar 

  • Ventriglia M, Bucossi S, Panetta V, Squitti R. Copper in Alzheimer’s disease: a meta-analysis of serum, plasma, and cerebrospinal fluid studies. J Alzheimers Dis. 2012;30(4):981–4.

    PubMed  Google Scholar 

  • Wang Z-X, Tan L, Wang H-F, Ma J, Liu J, Tan M-S, et al. Serum iron, zinc, and copper levels in patients with Alzheimer’s disease: a replication study and meta-analyses. J Alzheimers Dis. 2015;47(3):565–81.

    Article  CAS  PubMed  Google Scholar 

  • Weiser T, Wienrich M. The effects of copper ions on glutamate receptors in cultured rat cortical neurons. Brain Res. 1996;742(1–2):211–8.

    Article  CAS  PubMed  Google Scholar 

  • White AR, Barnham KJ, Bush AI. Metal homeostasis in Alzheimer’s disease. Expert Rev Neurother. 2006a;6(5):711–22.

    Article  CAS  PubMed  Google Scholar 

  • White AR, Du T, Laughton KM, Volitakis I, Sharples RA, Xilinas ME, et al. Degradation of the Alzheimer disease amyloid β-peptide by metal-dependent up-regulation of metalloprotease activity. J Biol Chem. 2006b;281(26):17670–80.

    Article  CAS  PubMed  Google Scholar 

  • Wyss-Coray T, Mucke L. Inflammation in neurodegenerative disease—a double-edged sword. Neuron. 2002;35(3):419–32.

    Article  CAS  PubMed  Google Scholar 

  • Zappasodi F, Salustri C, Babiloni C, Cassetta E, Del Percio C, Ercolani M, et al. An observational study on the influence of the APOE-ε4 allele on the correlation between ‘free’copper toxicosis and EEG activity in Alzheimer disease. Brain Res. 2008;1215:183–9.

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, White C, Lee J, Peterson TS, Bush AI, Sun GY, et al. Altered microglial copper homeostasis in a mouse model of Alzheimer’s disease. J Neurochem. 2010;114(6):1630–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L-X, Du J-T, Zeng Z-Y, Wu W-H, Zhao Y-F, Kanazawa K, et al. Copper (II) modulates in vitro aggregation of a tau peptide. Peptides. 2007;28(11):2229–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony R. White Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mathys, Z.K., White, A.R. (2017). Copper and Alzheimer’s Disease. In: Aschner, M., Costa, L. (eds) Neurotoxicity of Metals. Advances in Neurobiology, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-60189-2_10

Download citation

Publish with us

Policies and ethics