Advertisement

Neurocytology: Cells of the CNS

  • Stanley Jacobson
  • Elliott M. Marcus
  • Stanley Pugsley
Chapter

Abstract

There are two major cell types that form the nervous system: supporting cells and conducting cells. The supporting cells of the peripheral nervous system consist of Schwann cells, fibroblasts, and satellite cells, while the supporting cells in the CNS consist of the glia; the lining cells of the ventricles, the ependymal; the meningeal coverings of the brain; the circulating blood cells; and the endothelial lining cells of the blood vessels. The conducting cells, or neurons, form the circuitry within the brain and spinal cord, and their axons can be as short as a few microns or as long as 1 m. The supporting cells are constantly being replaced, but the majority of conducting cells/neurons, once formed, remain throughout our life.

Keywords

Neuron Dendrites Soma Synapse Dendritic spines Astrocyte Oligodendrocyte Blood–brain barrier Transport 

Specific References

  1. Baker HF, Ridley RM (editors). Humana Press Series: Methods in molecular medicine, vol. 59; 2001, 292p. 97 illus., 1 in color., Humana Press. 336p.Google Scholar
  2. Barr M, Bertram R. A morphological distinction between neurons of the male and female, and the behavior of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature. 1949;163:676–8.CrossRefPubMedGoogle Scholar
  3. Bentivoglio MH, Kuypers GJM, Catsman-Berrevoets CE, Loewe H, Dann O. Two new fluorescent retrogradeneuronal tracers which are transported over long distances. Neurosci Lett. 1980;18:25–30.CrossRefPubMedGoogle Scholar
  4. Bodian D. An electron microscopic characterization of classes of synaptic vesicles by means of controlled aldehyde fixation. J Cell Biol. 1970;44:115.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brady ST. A novel brain ATPase with properties expected for the fast axonal transport motor. Nature (London). 1985;317:73–5.CrossRefGoogle Scholar
  6. Brightman J. The anatomic basis of the blood-brain barrier. In: Neuwelt EA, editor. Implications of the blood-brain barrier and its manipulation, vol. 1. New York: Plenum; 1989. p. 125.Google Scholar
  7. Colonnier M. Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscopic study. Brain Res. 1969;33:268–81.Google Scholar
  8. Cowan WM, Gottlieb DI, Hendrickson AE, Price JL, Woolsey TA. The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res. 1972;37:21–51.CrossRefPubMedGoogle Scholar
  9. Darnell J, Lodish H, Baltimore D. Molecular cell biology. 2nd ed. New York: Scientific American Books; 1990.Google Scholar
  10. Davis EJ, Foster TD, Thomas WE. Cellular forms and functions of brain microglia. Brain Res Bull. 1994;34:73–8.CrossRefPubMedGoogle Scholar
  11. De Duve C, Wattiaux R. Functions of lysosomes. Ann Rev Physiol. 1966;28:435.CrossRefGoogle Scholar
  12. Deng W, Gage FH. The effect of immature adult-born dentate granule cells on hyponeophagial behavior is related to their roles in learning and memory. Front Syst Neurosci. 2015;9:34.PubMedPubMedCentralGoogle Scholar
  13. Esposito P, Gheorghe D, Kandere K, Pang X, Connolly R, Jacobson S, Theoharides TC. Acute stress increases permeability of the blood-brain barrier through activation of brain mast cells. Brain Res. 2001;888:117–27.CrossRefPubMedGoogle Scholar
  14. Finger S. Origins of neuroscience: a history of exploration into brain function. New York: Oxford; 1994.Google Scholar
  15. Gage FH. Mammalian neural stem cells. Science. 2000;287(5457):1433–8.CrossRefPubMedGoogle Scholar
  16. Gage FH. Neurogenesis in the adult brain. J Neurosci. 2002;22:612–3.PubMedGoogle Scholar
  17. Goodman CS. The likeness of being; phylogenetically conserved molecular mechanisms of growth cone guidance. Cell. 1994;78:353–6.CrossRefPubMedGoogle Scholar
  18. Graftstein B, Forman DS. Intracellular transport in neurons. Physiol Rev. 1980;60:1167–83.Google Scholar
  19. Gray EG. Axosomatic and axodendritic synapses of the cerebral cortex; an electron microscopic study. J Anat. 1959;93:420.PubMedPubMedCentralGoogle Scholar
  20. Guth L, Jacobson S. The rate of regeneration of the cat vagus nerve. Exp Neurol. 1966;14:439.CrossRefPubMedGoogle Scholar
  21. Haase A. Pathogenesis of lentivirus infections. Nature. 1986;322:130–6.CrossRefPubMedGoogle Scholar
  22. Hall ZW, Sanes JR. Synaptic structure and development: the neuromuscular junction. Cell. 1993;10:99–121.CrossRefGoogle Scholar
  23. Herman I, Jacobson S. In situ analysis of microvascular periocytes in hypertensive rate brain. Tissue Cell. 1988;20:1–12.CrossRefPubMedGoogle Scholar
  24. Horner PJ, Gage FH. Regenerating the damaged central nervous system. Nature. 2000;407:963–70.CrossRefPubMedGoogle Scholar
  25. Hotulainen H, Hoogenraad J. Mammalian brain development. Cucullo: LucaBook; 2010.Google Scholar
  26. Jacobson S. Sequence of myelinization in the brain of the albino rat. A. Cerebral cortex, thalamus and related structures. J Comp Neurol. 1963;121:5–29.CrossRefPubMedGoogle Scholar
  27. Jacobson S, Guth L. An electrophysiological study of the early stages of peripheral nerve regeneration. Exp Neurol. 1965;11:48.CrossRefPubMedGoogle Scholar
  28. Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The glymphatic system: a Beginner’s guide. Neurochem Res. 2015;12:2583–99.CrossRefGoogle Scholar
  29. Johanson DC, Wong K. Lucy’s legacy; the quest for human origins. New York: Harmony Books; 2009.Google Scholar
  30. Kandel E, Schwartz J, Jessell T. Principles of neuroscience. New York: Mc Graw Hill; 2009.Google Scholar
  31. Kernakc DR, Rakic P. Continuations of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci U S A. 1976;96:5768–73.Google Scholar
  32. Lasek RJ, Joseph BS. Radioautography as a neuroanatomic tracing method. Anat Rec. 1967;157:275–6.Google Scholar
  33. LaVail JH, LaVail MM. Retrograde axonal transport in the central nervous system. Science. 1972;176:1416–7.CrossRefPubMedGoogle Scholar
  34. Levi-Montalcini R, Angeletti PU. Biological aspects of the nerve growth factor. In: Woolstenholme EE, Connor MO, editors. Growth of the nervous system. Boston: Little, Brown; 1968.Google Scholar
  35. Ling EA, Wong Glai W. The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia. 1993;7:9–18.CrossRefPubMedGoogle Scholar
  36. Litzman R. The trembling mountain: a personal account of Kuru, Cannibals, and Mad Cow Disease. Persusu Publishing CO; 2001.Google Scholar
  37. McQuarrie IG. Cytoskeleton of the regenerating nerve. In: Reier PJ, Bunge RD, Seil FJ, editors. Current issues in neural regeneration research. New York: A. R. Leiss; 1988. p. 23–32.Google Scholar
  38. Nauta WJH. Silver impregnation of degeneration axons. In: Windle WF, editor. New research techniques of neuroanatomy. Springfield, IL: Charles C Thomas; 1957.Google Scholar
  39. Neuwelt EA, Dahlborg SA. Blood-brain barrier disruption in the treatment of brain tumors: clinical implications. In: Neuwelt EA, editor. Implications of the blood-brain barrier and its manipulation, vol. 2. New York: Plenum Press; 1989. p. 195–262.CrossRefGoogle Scholar
  40. Oppenheim RW. Cell death during development of the nervous system. Ann Rev Neurosci. 1991;14:453–501.CrossRefPubMedGoogle Scholar
  41. Palay SL. Principles of cellular organization in the nervous system. In: Quarton GC, Melnechuk T, Schmitt FO, editors. The neurosciences: a study program. New York: Rockefeller University Press; 1967.Google Scholar
  42. Pardridge WM. Introduction to the blood-brain barrier: methodology, biology and pathology [paperback] (editor) Cambrdge University Press; 2006.Google Scholar
  43. Price SD, Brew RB, Sidtis J, Rosenblum M, Scheck A, Cleary P. The brain in AIDS: central nervous system HIV-1 infection and AIDS dementia complex. Science. 1988;231:586–92.CrossRefGoogle Scholar
  44. Ramón y Cajal S. Histologie du système nerveux de l=homme et des vertèbres. Paris: J. A. Maloine; 1909.Google Scholar
  45. Ramón y Cajal S. Degeneration and regeneration of the nervous system. Oxford: London; 1928.Google Scholar
  46. Rassmussen GT. Selective silver impregnation of synaptic endings. In: Windle WF, editor. New research techniques of neuroanatomy. Springfield, IL: Charles C Thomas; 1957.Google Scholar
  47. Reese TS, Karnovsky MJ. Fine structural localization of the blood-brain barrier to exogenous peroxidase. J Cell Biol. 1968;34:207.CrossRefGoogle Scholar
  48. Ridley R. Fatal protein: the story of CJD, BSE and other prion diseases. In: Harry Baker Series: Methods in molecular medicine, vol. 3; 1996.Google Scholar
  49. del Rio-Hortega P. El Atercer elemento@ de los centros nerviosos. Boletín de la Sociedad española delbiologica. 1919;9:69–120.Google Scholar
  50. Scharrer E. Endocrines and the central nervous system. Baltimore: Lippincott Williams & Wilkins; 1966.Google Scholar
  51. Schwartz J. 1980. The transport of substances in nerve cells. Sci Am 242:152–171.Google Scholar
  52. Sedgwick JD, Dorries R. The immune system response to viral infection. Neurosciences. 1991;3:93–100.Google Scholar
  53. Serafini T, TE Kennedy, MJ Galko, C Mizrayan, TM Jessel, M Tessler-Lavigne. 1994. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78:409–424.Google Scholar
  54. Sladek JR Jr, Gash DM. Neural transplants: development and function. New York: Plenum Press; 1984.CrossRefGoogle Scholar
  55. Tatersall I. Human origins; out of Africa. Proc Natl Acad Sci. 2009;106:16018–21.CrossRefGoogle Scholar
  56. Vale RD. Intracellular transport using microtubule based molecules. Ann Rev Cell Biol. 1987;3:347–78.CrossRefPubMedGoogle Scholar
  57. Vale RD, Reese TS, Sheetz MP. Identification of a novel force-generating protein, kinesin, involved in microtubule based motility. Cell. 1985;42:39–50.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Vaughn JE, Peters AE. A third neuroglial cell type. J Comp Neurol. 1968;133:269–88.CrossRefPubMedGoogle Scholar
  59. Volterra, Meldolesi. Astrocytes, from brain glue to communication elements. Nat Rev Neurosci. 2005;5:626–40.CrossRefGoogle Scholar
  60. Weiss PA, Hiscoe MB. Experiments on the mechanism of nerve growth. J Exp Zool. 1948;197:315–96.CrossRefGoogle Scholar
  61. Wislocki GB, Leduc EH. Vital staining of the hematoencephalic barrier by silver nitrate and trypan blue and cytological comparisons of neurohypophysis, pineal body, area postrema, intercolumnar tubercle and supraoptic crest. J Comp Neurol. 1952;96:371.CrossRefPubMedGoogle Scholar
  62. Wujek JR, Lasek RK. Correlation of axonal regeneration and slow component B in two branches of a single axon. J Neurosci. 1983;3:243–51.PubMedGoogle Scholar
  63. Young JZ. Functional repair of nervous tissue. Physiol Rev. 1942;22:318–74.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Stanley Jacobson
    • 1
  • Elliott M. Marcus
    • 2
  • Stanley Pugsley
    • 3
  1. 1.BostonUSA
  2. 2.Jamaica PlainUSA
  3. 3.South Abington Twp.USA

Personalised recommendations