Skip to main content

Neurocytology: Cells of the CNS

  • Chapter
  • First Online:
Neuroanatomy for the Neuroscientist

Abstract

There are two major cell types that form the nervous system: supporting cells and conducting cells. The supporting cells of the peripheral nervous system consist of Schwann cells, fibroblasts, and satellite cells, while the supporting cells in the CNS consist of the glia; the lining cells of the ventricles, the ependymal; the meningeal coverings of the brain; the circulating blood cells; and the endothelial lining cells of the blood vessels. The conducting cells, or neurons, form the circuitry within the brain and spinal cord, and their axons can be as short as a few microns or as long as 1 m. The supporting cells are constantly being replaced, but the majority of conducting cells/neurons, once formed, remain throughout our life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Specific References

  • Baker HF, Ridley RM (editors). Humana Press Series: Methods in molecular medicine, vol. 59; 2001, 292p. 97 illus., 1 in color., Humana Press. 336p.

    Google Scholar 

  • Barr M, Bertram R. A morphological distinction between neurons of the male and female, and the behavior of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature. 1949;163:676–8.

    Article  CAS  PubMed  Google Scholar 

  • Bentivoglio MH, Kuypers GJM, Catsman-Berrevoets CE, Loewe H, Dann O. Two new fluorescent retrogradeneuronal tracers which are transported over long distances. Neurosci Lett. 1980;18:25–30.

    Article  CAS  PubMed  Google Scholar 

  • Bodian D. An electron microscopic characterization of classes of synaptic vesicles by means of controlled aldehyde fixation. J Cell Biol. 1970;44:115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady ST. A novel brain ATPase with properties expected for the fast axonal transport motor. Nature (London). 1985;317:73–5.

    Article  CAS  Google Scholar 

  • Brightman J. The anatomic basis of the blood-brain barrier. In: Neuwelt EA, editor. Implications of the blood-brain barrier and its manipulation, vol. 1. New York: Plenum; 1989. p. 125.

    Google Scholar 

  • Colonnier M. Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscopic study. Brain Res. 1969;33:268–81.

    Google Scholar 

  • Cowan WM, Gottlieb DI, Hendrickson AE, Price JL, Woolsey TA. The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res. 1972;37:21–51.

    Article  CAS  PubMed  Google Scholar 

  • Darnell J, Lodish H, Baltimore D. Molecular cell biology. 2nd ed. New York: Scientific American Books; 1990.

    Google Scholar 

  • Davis EJ, Foster TD, Thomas WE. Cellular forms and functions of brain microglia. Brain Res Bull. 1994;34:73–8.

    Article  CAS  PubMed  Google Scholar 

  • De Duve C, Wattiaux R. Functions of lysosomes. Ann Rev Physiol. 1966;28:435.

    Article  Google Scholar 

  • Deng W, Gage FH. The effect of immature adult-born dentate granule cells on hyponeophagial behavior is related to their roles in learning and memory. Front Syst Neurosci. 2015;9:34.

    PubMed  PubMed Central  Google Scholar 

  • Esposito P, Gheorghe D, Kandere K, Pang X, Connolly R, Jacobson S, Theoharides TC. Acute stress increases permeability of the blood-brain barrier through activation of brain mast cells. Brain Res. 2001;888:117–27.

    Article  CAS  PubMed  Google Scholar 

  • Finger S. Origins of neuroscience: a history of exploration into brain function. New York: Oxford; 1994.

    Google Scholar 

  • Gage FH. Mammalian neural stem cells. Science. 2000;287(5457):1433–8.

    Article  CAS  PubMed  Google Scholar 

  • Gage FH. Neurogenesis in the adult brain. J Neurosci. 2002;22:612–3.

    CAS  PubMed  Google Scholar 

  • Goodman CS. The likeness of being; phylogenetically conserved molecular mechanisms of growth cone guidance. Cell. 1994;78:353–6.

    Article  CAS  PubMed  Google Scholar 

  • Graftstein B, Forman DS. Intracellular transport in neurons. Physiol Rev. 1980;60:1167–83.

    Google Scholar 

  • Gray EG. Axosomatic and axodendritic synapses of the cerebral cortex; an electron microscopic study. J Anat. 1959;93:420.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guth L, Jacobson S. The rate of regeneration of the cat vagus nerve. Exp Neurol. 1966;14:439.

    Article  CAS  PubMed  Google Scholar 

  • Haase A. Pathogenesis of lentivirus infections. Nature. 1986;322:130–6.

    Article  CAS  PubMed  Google Scholar 

  • Hall ZW, Sanes JR. Synaptic structure and development: the neuromuscular junction. Cell. 1993;10:99–121.

    Article  Google Scholar 

  • Herman I, Jacobson S. In situ analysis of microvascular periocytes in hypertensive rate brain. Tissue Cell. 1988;20:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Horner PJ, Gage FH. Regenerating the damaged central nervous system. Nature. 2000;407:963–70.

    Article  CAS  PubMed  Google Scholar 

  • Hotulainen H, Hoogenraad J. Mammalian brain development. Cucullo: LucaBook; 2010.

    Google Scholar 

  • Jacobson S. Sequence of myelinization in the brain of the albino rat. A. Cerebral cortex, thalamus and related structures. J Comp Neurol. 1963;121:5–29.

    Article  CAS  PubMed  Google Scholar 

  • Jacobson S, Guth L. An electrophysiological study of the early stages of peripheral nerve regeneration. Exp Neurol. 1965;11:48.

    Article  CAS  PubMed  Google Scholar 

  • Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The glymphatic system: a Beginner’s guide. Neurochem Res. 2015;12:2583–99.

    Article  Google Scholar 

  • Johanson DC, Wong K. Lucy’s legacy; the quest for human origins. New York: Harmony Books; 2009.

    Google Scholar 

  • Kandel E, Schwartz J, Jessell T. Principles of neuroscience. New York: Mc Graw Hill; 2009.

    Google Scholar 

  • Kernakc DR, Rakic P. Continuations of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci U S A. 1976;96:5768–73.

    Google Scholar 

  • Lasek RJ, Joseph BS. Radioautography as a neuroanatomic tracing method. Anat Rec. 1967;157:275–6.

    Google Scholar 

  • LaVail JH, LaVail MM. Retrograde axonal transport in the central nervous system. Science. 1972;176:1416–7.

    Article  CAS  PubMed  Google Scholar 

  • Levi-Montalcini R, Angeletti PU. Biological aspects of the nerve growth factor. In: Woolstenholme EE, Connor MO, editors. Growth of the nervous system. Boston: Little, Brown; 1968.

    Google Scholar 

  • Ling EA, Wong Glai W. The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia. 1993;7:9–18.

    Article  CAS  PubMed  Google Scholar 

  • Litzman R. The trembling mountain: a personal account of Kuru, Cannibals, and Mad Cow Disease. Persusu Publishing CO; 2001.

    Google Scholar 

  • McQuarrie IG. Cytoskeleton of the regenerating nerve. In: Reier PJ, Bunge RD, Seil FJ, editors. Current issues in neural regeneration research. New York: A. R. Leiss; 1988. p. 23–32.

    Google Scholar 

  • Nauta WJH. Silver impregnation of degeneration axons. In: Windle WF, editor. New research techniques of neuroanatomy. Springfield, IL: Charles C Thomas; 1957.

    Google Scholar 

  • Neuwelt EA, Dahlborg SA. Blood-brain barrier disruption in the treatment of brain tumors: clinical implications. In: Neuwelt EA, editor. Implications of the blood-brain barrier and its manipulation, vol. 2. New York: Plenum Press; 1989. p. 195–262.

    Chapter  Google Scholar 

  • Oppenheim RW. Cell death during development of the nervous system. Ann Rev Neurosci. 1991;14:453–501.

    Article  CAS  PubMed  Google Scholar 

  • Palay SL. Principles of cellular organization in the nervous system. In: Quarton GC, Melnechuk T, Schmitt FO, editors. The neurosciences: a study program. New York: Rockefeller University Press; 1967.

    Google Scholar 

  • Pardridge WM. Introduction to the blood-brain barrier: methodology, biology and pathology [paperback] (editor) Cambrdge University Press; 2006.

    Google Scholar 

  • Price SD, Brew RB, Sidtis J, Rosenblum M, Scheck A, Cleary P. The brain in AIDS: central nervous system HIV-1 infection and AIDS dementia complex. Science. 1988;231:586–92.

    Article  Google Scholar 

  • Ramón y Cajal S. Histologie du système nerveux de l=homme et des vertèbres. Paris: J. A. Maloine; 1909.

    Google Scholar 

  • Ramón y Cajal S. Degeneration and regeneration of the nervous system. Oxford: London; 1928.

    Google Scholar 

  • Rassmussen GT. Selective silver impregnation of synaptic endings. In: Windle WF, editor. New research techniques of neuroanatomy. Springfield, IL: Charles C Thomas; 1957.

    Google Scholar 

  • Reese TS, Karnovsky MJ. Fine structural localization of the blood-brain barrier to exogenous peroxidase. J Cell Biol. 1968;34:207.

    Article  Google Scholar 

  • Ridley R. Fatal protein: the story of CJD, BSE and other prion diseases. In: Harry Baker Series: Methods in molecular medicine, vol. 3; 1996.

    Google Scholar 

  • del Rio-Hortega P. El Atercer elemento@ de los centros nerviosos. Boletín de la Sociedad española delbiologica. 1919;9:69–120.

    Google Scholar 

  • Scharrer E. Endocrines and the central nervous system. Baltimore: Lippincott Williams & Wilkins; 1966.

    Google Scholar 

  • Schwartz J. 1980. The transport of substances in nerve cells. Sci Am 242:152–171.

    Google Scholar 

  • Sedgwick JD, Dorries R. The immune system response to viral infection. Neurosciences. 1991;3:93–100.

    Google Scholar 

  • Serafini T, TE Kennedy, MJ Galko, C Mizrayan, TM Jessel, M Tessler-Lavigne. 1994. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78:409–424.

    Google Scholar 

  • Sladek JR Jr, Gash DM. Neural transplants: development and function. New York: Plenum Press; 1984.

    Book  Google Scholar 

  • Tatersall I. Human origins; out of Africa. Proc Natl Acad Sci. 2009;106:16018–21.

    Article  Google Scholar 

  • Vale RD. Intracellular transport using microtubule based molecules. Ann Rev Cell Biol. 1987;3:347–78.

    Article  CAS  PubMed  Google Scholar 

  • Vale RD, Reese TS, Sheetz MP. Identification of a novel force-generating protein, kinesin, involved in microtubule based motility. Cell. 1985;42:39–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaughn JE, Peters AE. A third neuroglial cell type. J Comp Neurol. 1968;133:269–88.

    Article  CAS  PubMed  Google Scholar 

  • Volterra, Meldolesi. Astrocytes, from brain glue to communication elements. Nat Rev Neurosci. 2005;5:626–40.

    Article  Google Scholar 

  • Weiss PA, Hiscoe MB. Experiments on the mechanism of nerve growth. J Exp Zool. 1948;197:315–96.

    Article  Google Scholar 

  • Wislocki GB, Leduc EH. Vital staining of the hematoencephalic barrier by silver nitrate and trypan blue and cytological comparisons of neurohypophysis, pineal body, area postrema, intercolumnar tubercle and supraoptic crest. J Comp Neurol. 1952;96:371.

    Article  CAS  PubMed  Google Scholar 

  • Wujek JR, Lasek RK. Correlation of axonal regeneration and slow component B in two branches of a single axon. J Neurosci. 1983;3:243–51.

    CAS  PubMed  Google Scholar 

  • Young JZ. Functional repair of nervous tissue. Physiol Rev. 1942;22:318–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Jacobson, S., Marcus, E.M., Pugsley, S. (2018). Neurocytology: Cells of the CNS. In: Neuroanatomy for the Neuroscientist. Springer, Cham. https://doi.org/10.1007/978-3-319-60187-8_2

Download citation

Publish with us

Policies and ethics