Motor Systems III: The Cerebellum Movement and Major Fiber Pathways of the Cerebellum

  • Stanley Jacobson
  • Elliott M. Marcus
  • Stanley Pugsley


The role of the cerebellum is to integrate the sensory input from the periphery to provide smooth coordinated voluntary movements. It is a laminated cortical region with four deep nuclei (dentate, fastifigial, emboliform, and interpositus) and is attached to the brain stem by three peduncles- the superior, middle and inferior cerebellar peduncles. Superior cerebellar peduncle (brachium conjunctivum) is primarily efferent and projects via the dentate, fastigial, and interpositus nucleus to the red nucleus of the midbrain and onto thalamic motor nuclei which then project onto cerebrum. The middle cerebellar peduncle (brachium pontis) is the largest cerebellar peduncle and receives input primarily from the contralateral cerebrum via deep pontine nuclei whose fibers then project onto the neocerebellum. The inferior cerebellar peduncle provides sensory input via climbing fibers from the inferior olivary nucleus of the medulla and proprioceptive mossy fibers from the spinocerebellar tract and lateral cuneate nucleus and projects onto the paleocerebellum. The juxtarestiform body lies next to the inferior cerebellar peduncle and carries ipsilateral input from the vestibular nuclei onto the flocculonodular lobe of the archicerebellum and midline vermis which are important in posture and movements.


Median/vermis Paramedian Lateral hemisphere Cerebellar peduncles Cortical layers Purkinje cells 


  1. Allin M, Matsumoto H, Santhouse AM, Nosarti C, et al. Cognitive and motor function and the size of the cerebellum in adolescents born very preterm. Brain. 2001;124:60–6.CrossRefPubMedGoogle Scholar
  2. Amarenco P, Chevrie-Muller C, Roullet E, Bousser MG. Paravermal infarct and isolated cerebellar dysarthria. Ann Neurol. 1991a;30:211–3.CrossRefPubMedGoogle Scholar
  3. Carrera RME, Mettler FA. Physiologic consequences following extensive removals of cerebellar cortex and deep cerebellar nuclei and effect of secondary cerebral ablations in the primate. J Comp Neurol. 1947;87:167–288.Google Scholar
  4. Courchesne E, Townsend J, Saitoh O. The brain in infantile autism: posterior fossa structures are abnormal. Neurology. 1994;44:214–23.CrossRefPubMedGoogle Scholar
  5. Diener HC, Dichgans J. Pathophysiology of cerebellar ataxias. Mov Disord. 1992;7:95–109.CrossRefPubMedGoogle Scholar
  6. Dow RS, Moruzzi G. The physiology and pathology of the cerebellum. Minneapolis: University of Minnesota Press; 1958.Google Scholar
  7. Drepper J, Timmann D, Kolb FP, Diener HC. Non-motor associative learning inpatients with isolated degenerative cerebellar disease. Brain. 1999;122:87–97.CrossRefPubMedGoogle Scholar
  8. Fiez JA, Petersen SE, Cheney MK, Raichle ME. Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. Brain. 1992;115:155–78.CrossRefPubMedGoogle Scholar
  9. Gilman S. Cerebellum and motor function. In: Asbury AK, McKhann GM, Mc Donald WI, editors. Diseases of the nervous system clinical neurobiology, vol. 1. Philadelphia: W.B. Saunders; 1986. p. 401–22.Google Scholar
  10. Holmes G. Clinical symptoms of cerebellar disease and their interpretation. The Croonian lectures. Lancet. 1922;1. 1177–1182, 1231–1237; 2:59–65, 111–115Google Scholar
  11. Holmes G. The cerebellum of man. Brain. 1939;62:1–30.CrossRefGoogle Scholar
  12. Ito M. The cerebellum and motor control. New York: Raven Press; 1984.Google Scholar
  13. Lechtenberg R. Ataxia and other cerebellar syndromes. In: Ankovic J, Tolosa E, editors. Parkinson’s disease and movement disorders. Baltimore/Munich: Urban & Schwarzenberg; 1988. p. 365–76.Google Scholar
  14. Lechtenberg R, Gilman S. Speech disorders in cerebellar disease. Ann Neurol. 1978;3:285–90.CrossRefPubMedGoogle Scholar
  15. Levinsohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumor resection in children. Brain. 2000;123:1041–50.CrossRefGoogle Scholar
  16. Mettler FA, Orioli F. Studies on abnormal movement: cerebellar ataxia. Neurology. 1958;8:953–61.CrossRefPubMedGoogle Scholar
  17. Noback, C.R. et al.: 1991. The Human Nervous System. 4th ed, Philadelphia. Lea & Febiger p. 282.Google Scholar
  18. Orioli FL, Mettler FA. Consequences of section of the simian restiform body. J Comp Neurol. 1958;109:195–204.CrossRefPubMedGoogle Scholar
  19. Raymond JLS, Lisberger G, Mauk MD. The cerebellum: a neuronal learning machine? Science. 1996;272:1126–31.CrossRefPubMedGoogle Scholar
  20. Riva D, Giogi C. The cerebellum contributes to higher functions during development. Brain. 2000;123:10411061.CrossRefGoogle Scholar
  21. Sanes JN, Dimitrov B, Hallett M. Motor learning in patients with cerebellar dysfunction. Brain. 1990;113:103–20.CrossRefPubMedGoogle Scholar
  22. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.CrossRefPubMedGoogle Scholar
  23. Snider. R.S.: 1950. Arch. Neurol. Psych. 64:204 (AMA).Google Scholar
  24. Thach WT. Cerebellar inputs to motor cortex. In: Ciba foundation symposium 132: motor areas of the cerebral cortex. Chichester: John Wiley; 1987. p. 201–20.Google Scholar
  25. Thach WT, Goodkin M, Keating JG. The cerebellum: the adaptive coordination of movement. Ann Rev Neurosci. 1992;15:402–42.CrossRefGoogle Scholar
  26. Topka H, Valls-Sole J, Massaquoi SG, Hallett M. Deficit in classical conditioning in patients with cerebellar degeneration. Brain. 1993;116:961–9.CrossRefPubMedGoogle Scholar
  27. Wood NW, Harding AE. Cerebellar and spinocerebellar disorders. In: Bradley WG, Daroff RB, Fenichel GM, Marsden CD, editors. Neurology in clinical practice, vol. II. Boston: Butterworth Heinemann; 2000b. p. 1931–51.Google Scholar

Cerebellum Degenerations and Systemic Disorders

  1. Baloh RW, Yee RD, Honrubia V. Late cortical cerebellar atrophy: clinical and oculographic features. Brain. 1986;109:159–80.CrossRefPubMedGoogle Scholar
  2. Berciano J. Olivopontocerebellar atrophy. In: Jankovic J, Tolosa E, editors. Parkinson’s disease and movement disorders. Baltimore/Munich: Urban & Schwarzenberg; 1988. p. 131–51.Google Scholar
  3. Bhatia KP, Griggs RC, Ptacek LJ. Episodic movement disorders as channelopathies. Mov Disord. 2000;15:429–33.CrossRefGoogle Scholar
  4. Burk K, Abele M, Fetter M, et al. Autosomal dominant cerebellar ataxia type I clinical features and MRI in families with SCA 1, SCA 2 and SCA 3. Brain. 1996;119:1497–505.CrossRefPubMedGoogle Scholar
  5. Fujigasaki H, Verma IC, Camuzat A, et al. SCA 12 is a rare locus for autosomal dominant cerebellar ataxia: a study of an Indian family. Ann Neurol. 2001;49:117–21.CrossRefPubMedGoogle Scholar
  6. Giunti P, Sabbadini G,. Sweeney G,MG, et al. The role of the SCA 2 trinucleotide repeat expansion in 89 autosomal dominant cerebellar ataxia. Frequency, clinical and genetic correlates. Brain. 1998;121:459–67.CrossRefPubMedGoogle Scholar
  7. Giunti P, Sweeney MG, Harding AE. Detection of the Machado-Joseph disease/spinocerebellar ataxia three trinucleotides repeat expansion in families with autosomal dominant motor disorders including the drew family of walworth. Brain. 1995;118:1077–85.CrossRefPubMedGoogle Scholar
  8. Greenfield JG. The spinocerebellar degenerations. Springfield, IL: Charles C Thomas; 1954.Google Scholar
  9. Thomas CC, Harding AE. Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intra-familial clustering of clinical features. Brain. 1981;104:589–620.CrossRefGoogle Scholar
  10. Klockgether T, Wullner U, Spauschus A, Evert B. The molecular biology of the autosomal- dominant cerebellar ataxias. Mov Disord. 2000;15:604–12.CrossRefPubMedGoogle Scholar
  11. Mason WP, Graus F, Lang B, et al. Small cell lung cancer, paraneoplastic cerebellar degeneration and the Lambert–Eaton myasthenia syndrome. Brain. 1997;120:1279–300.CrossRefPubMedGoogle Scholar
  12. Rosen FS, Harris NL. A 30-year-old man with ataxia telangiectasia and dysarthria. Case records of the Massachusetts General Hospital: Case #2–1987. N Engl J Med. 1987;316:91–100.CrossRefGoogle Scholar
  13. Rosenberg RN. Machado-Joseph disease: an autosomal dominant motor system degeneration. Mov Disord. 1992;7:193–203.CrossRefPubMedGoogle Scholar
  14. Rosenberg RN. DNA-triplet repeats and neurologic disease. N Engl J Med. 1996;335:1222–4.CrossRefPubMedGoogle Scholar
  15. Smitt PS, Kinoshita A, De Leeuw B, et al. Paraneoplastic cerebellar ataxia due to autoantibodies against a glutamate receptor. N Engl J Med. 2000;342:21–7.CrossRefGoogle Scholar
  16. Sudarsky L, Corwin L, Dawson DM. Machado-Joseph disease in New England: clinical description and distinction from olivopontocerebellar atrophy. Mov Disord. 1992;7:204–8.CrossRefPubMedGoogle Scholar
  17. Swift M, Morrell D, Massey RB, Chase CL. Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med. 1991;325:1831–6.CrossRefPubMedGoogle Scholar
  18. Tolosa E, Berciano J. Choreas, hereditary and other ataxias and other movement disorders. Curr Opin Neurol Neurosurg. 1993;6:358–68.PubMedGoogle Scholar
  19. Truman JT, Richardson EP Jr, Dvorak HF. Case records of the Massachusetts General Hospital, case 22-1975 (Ataxia-Telangiectasia). N Engl J Med. 1975;292:1231–7.CrossRefGoogle Scholar
  20. Victor M, Adams RD, Collins GH. The Wernicke Korsakoff syndrome and related neurological disorders due to alcoholism and malnutrition. 2nd ed. F. A. Davis: Philadelphia; 1989.Google Scholar
  21. Victor M, Adams RD, Mancall EL. A restricted form of cerebellar cortical degeneration occurring in alcoholic patients. Arch Neurol. 1959;1:579–688.CrossRefGoogle Scholar
  22. Yount WJ. IgG2 deficiency and ataxia telangiectas (editorial). N Engl J Med. 1981;306:541–3.CrossRefGoogle Scholar

Vascular Syndromes of the Cerebellum

  1. Amarenco P. The spectrum of cerebellar infarctions. Neurology. 1991;41:973–9.CrossRefPubMedGoogle Scholar
  2. Amarenco P, Hauw JJ. Cerebellar infarction in the territory of the superior cerebellar artery: a clinicopathologic study of 33 cases. Neurology. 1990a;40:1383–90.CrossRefPubMedGoogle Scholar
  3. Amarenco P, Hauw JJ. Cerebellar infarction in the territory of the anterior and inferior cerebellar artery. Brain. 1990b;113:139–55.CrossRefPubMedGoogle Scholar
  4. Amarenco P, Kase CS, Rosengart A, et al. Very small (border zone) cerebellar infarcts. Distribution, causes, mechanisms and clinical features. Brain. 1993;116:161–86.CrossRefPubMedGoogle Scholar
  5. Amarenco P, Roulellet E, Goujon C, et al. Infarction in the anterior rostral cerebellum (the territory of the lateral branch of the superior cerebellar artery). Neurology. 1991b;41:253–8.CrossRefPubMedGoogle Scholar
  6. Caplan LR. Vertebrobasilar occlusive disease. In: Barnett HJM, et al., editors. Stroke: pathophysiology diagnosis and management, vol. 1; 1986. p. 549–619.Google Scholar
  7. Chaves CJ, Caplan LR, Chung CS, Amarenco P. Cerebellar infarcts. Curr Neurol. 1994;14:143–77.Google Scholar
  8. Chaves C, Pessin MS, Caplan LR, et al. Cerebellar hemorrhagic infarction. Neurology. 1996;46:346–9.CrossRefPubMedGoogle Scholar
  9. Greenberg J, Skubick D, Shenkin H. Acute hydrocephalus in cerebellar infarct and hemorrhage. Neurology. 1979;29:409–13.CrossRefPubMedGoogle Scholar
  10. Heros R. Cerebellar infarction and hemorrhage. Stroke. 1982;13:106.CrossRefPubMedGoogle Scholar
  11. Kase CS, Caplan LR. Hemorrhage affecting the brain stem and cerebellum. In: Barnett HJM, et al., editors. Stroke: pathophysiology diagnosis and management, vol. 1; 1986. p. 621–41.Google Scholar
  12. Kase CSB, Norrving O, Levine SR, et al. Cerebellar infarction. Clinical and anatomical observations in 66 patients. Stroke. 1993;24:76–83.CrossRefPubMedGoogle Scholar
  13. Skenkin HA, Zavala M. Cerebellar strokes: mortality, surgical indications and results of ventricular drainage. Lancet. 1982;11:429–31.CrossRefGoogle Scholar
  14. St. Louis EK, Wijdicks EF, Li H. Predicting neurologic deterioration in patients with cerebellar hematomas. Neurology. 1998;51:1364–9.CrossRefPubMedGoogle Scholar
  15. Sypert GW, Alvord EC. Cerebellar infarction. A clinicopathological study. Arch Neurol. 1975;32:357–63.CrossRefPubMedGoogle Scholar

Cerebellum and Tremor

  1. Colebatch JG, Britton T, Findley LJ, et al. The cerebellum is activated in essential tremor. Lancet. 1990;2:1028–30.CrossRefGoogle Scholar
  2. Deuschl G. Tremor: basic mechanisms and clinical aspects. Mov Disord. 1998;13(Suppl 3):1–149.Google Scholar
  3. Deuschl G, Wenzelburger R, Loffler K, et al. Essential tremor and cerebellar dysfunction. Clinical and kinematic analysis of intention tremor. Brain. 2000;123:1568–80.CrossRefPubMedGoogle Scholar
  4. Dupuis MJM, Delwaide PJ, Boucguey D, Gonette RE. Homolateral disappearance of essential tremor after cerebellar stroke. Mov Disord. 1989;4:183–7.CrossRefPubMedGoogle Scholar
  5. Elble RJ. Animal models of action tremor. Mov Disord. 1998;13(S3):35–9.CrossRefPubMedGoogle Scholar
  6. Findley LJ. Tremors: differential diagnosis and pharmacology. In: Jankovic J, Tolosa E, editors. Parkinson’s disease and movement disorders. Baltimore/Munich: Urban & Schwarzenberg; 1988. p. 243–61.Google Scholar
  7. Hallett M. Classification and treatment of tremor. JAMA. 1991;266:1115–7.CrossRefPubMedGoogle Scholar
  8. Hallett M. Overview of human tremor physiology. Mov Disord. 1998;13(S3):43–8.CrossRefPubMedGoogle Scholar
  9. Hua S, Reich SG, Zirh AT, et al. The role of the thalamus and basal ganglia in Parkinsonian tremor. Mov Disord. 1998;13(S3):40–2.CrossRefPubMedGoogle Scholar

Gait Disorders of the Elderly

  1. Adams RD, Fisher CM, Hakim S, et al. Symptomatic occult hydrocephalus with “normal” cerebrospinal fluid pressure: a treatable syndrome. N Engl J Med. 1965;273:117–26.Google Scholar
  2. Fisher CM. Hydrocephalus as a cause of disturbances of gait in the elderly. Neurology. 1982;32:1358–63.CrossRefPubMedGoogle Scholar
  3. Fishman RA. Normal pressure hydrocephalus and arthritis (editorial). N Engl J Med. 1985;312:1255–6.CrossRefPubMedGoogle Scholar
  4. Hachinski VC, Potter P, Merskey H. Leuko-araiosis. Arch Neurol. 1987;44:21–3.CrossRefPubMedGoogle Scholar
  5. Inzitar D, Diaz F, Fox A, et al. Vascular risk factors and leuko-araiosis. Arch Neurol. 1987;44:42–7.CrossRefGoogle Scholar
  6. Jacobs L, Conti D, Kinkel WR, Manning EJ. “Normal pressure” hydrocephalus: relationship of clinical and radiographic findings to improvement following shunt surgery. JAMA. 1976;235:510–2.Google Scholar
  7. Masdeu JC, Wolfson L, Lantos G, et al. Brain white matter changes in the elderly prone to falling. Arch Neurol. 1989;46:1292–6.CrossRefPubMedGoogle Scholar
  8. Rasker JJ, Jansen ENH, Haan J, Oostrom J. Normal pressure hydrocephalus in rheumatic patients: a diagnostic pitfall. N Engl J Med. 1985;312:1239–41.CrossRefPubMedGoogle Scholar
  9. Steingart A, Hackinski VC, Lau C, et al. Cognitive and neurological findings in subjects with diffuse white matter changes on computed topographic scan (leukoariosis). Arch Neurol. 1987;44:32–4.CrossRefPubMedGoogle Scholar
  10. Sudarsky L. Current concepts-geriatrics: gait disorders in the elderly. N Engl J Med. 1990;322:1441–6.CrossRefPubMedGoogle Scholar
  11. Sudarsky L, Ronthal M. Gait disorders among elderly patients: a survey study of 50 patients. Arch Neurol. 1983;40:740–3.CrossRefPubMedGoogle Scholar
  12. Thompson PD, Marsden CD. Gait disorder of subcorttical arteriosclerotic encephalopathy: Binswanger’s disease. Mov Disord. 1987;2:1–8.CrossRefPubMedGoogle Scholar
  13. Tinetti MD, Speechly M. Current concepts: geriatrics: prevention of falls among the elderly. N Engl J Med. 1989;320:1055–9.CrossRefPubMedGoogle Scholar
  14. Tinetti MD, Speechly M, Ginter SF. Risk factors for falls among elderly persons living in the community. N Engl J Med. 1988;319:1701–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Stanley Jacobson
    • 1
  • Elliott M. Marcus
    • 2
  • Stanley Pugsley
    • 3
  1. 1.BostonUSA
  2. 2.Jamaica PlainUSA
  3. 3.South Abington Twp.USA

Personalised recommendations