Advertisement

Cerebral Cortex Functional Localization

  • Stanley Jacobson
  • Elliott M. Marcus
  • Stanley Pugsley
Chapter

Abstract

Gross Anatomy. The cerebrum is the largest part of the brain and consists of the cerebral cortex and basal ganglia. The cerebral cortex consists of four lobes: the anteriorly placed frontal lobe, the parietal lobe in the middle, and the occipital lobe posteriorly with the inferiorly placed temporal lobe. The cortical neurons are found on the surface of the cerebrum covering the cortical white matter. Deep to the white matter is found the basal ganglia which will be discussed in the motor system.

Keywords

Frontal lobe Parietal lobe Occipital lobe Temporal lobe Cingulate gyrus Thalamic nuclei left hemisphere Right hemisphere 

General Bibliography-Cerebral Cortical Organization

  1. Bailey P, von Bonin G. The isocortex of man. Urbana, IL: University of Illinois Press; 1951.Google Scholar
  2. Brodal A. Neurological anatomy in relation to clinical medicine. 3rd ed. New York: Oxford University Press; 1981.Google Scholar
  3. Brodmann, K.. Localization in the cerebral cortex. English translation by Garey LJ. London: Smith-Gordon; 1994.Google Scholar
  4. Brazier, M.A.B.. The electrical activity of the nervous system. 4th ed. Baltimore: Williams and Wilkins; 1977. p. 66–74, 175–208, 217–36.Google Scholar
  5. Colonnier ML. The structural design of the neocortex. In: Eccles JC, editor. Brain and conscious experience. New York: Springer-Verlag; 1966. p. 1–23.Google Scholar
  6. Conel J. The postnatal development of the human cerebral cortex, vol. I–VI. Cambridge, MA: Harvard University Press; 1939–1968.Google Scholar
  7. Eccles JC, editor. Brain and conscious experience. New York: Springer Verlag; 1966.Google Scholar
  8. Engel J Jr. Seizures and epilepsy. Philadelphia: F.A. Davis; 1989. p. 41–70.Google Scholar
  9. Lorente de No R. Cerebral cortex: architecture, intracortical connections, motor projections. In: Fulton JF, editor. Physiology of the nervous system. 3rd ed. New York: Oxford University Press; 1949. p. 288–330.Google Scholar
  10. Peters A, Jones EG, editors. Cerebral cortex I: cellular components of the cerebral cortex. New York: Plenum; 1984.Google Scholar
  11. Rakic P, Singer W, editors. Neurobiology of neocortex. New York: Wiley; 1988.Google Scholar
  12. Reeves AG, editor. Epilepsy and the corpus callosum. New York: Plenum; 1985.Google Scholar
  13. Von Bonin G, Bailey P. The Neocortex of MacacaMulatta: University of Illinois Press; 1947.Google Scholar

Callosal References

  1. Curtis HH. Inter cortical connections of corpus callosum as indicated by evoked potentials. J Neurophysiol. 1940;3:407–13.Google Scholar
  2. Dehay C, Kennedy H, Bullier J, et al. Absence of interhemispheric connections of area 17 during development in the monkey. Nature. 1988;331:348–50.CrossRefPubMedGoogle Scholar
  3. Duchowny M, Jayakar P, Levin B. Aberrant neural circuits in malformation of cortical development and focal epilepsy. Neurology. 2000;55:423–8.CrossRefPubMedGoogle Scholar
  4. French JD, Gernandt BE, Livingston RB. Regional differences in seizure susceptibility in monkey cortex. Arch Neurol Psychiatr. 1956;72:260–74.CrossRefGoogle Scholar
  5. Jacobson S, Marcus EM. The laminar distribution of fibers of the corpus callosum: a comparative study in rat, cat, monkey and chimpanzee. Brain Res. 1970;24:517–28.CrossRefPubMedGoogle Scholar
  6. Jacobson S, Trojanowski JQ. The cells of origin of the corpus callosum in rat, cat and rhesus monkey. Brain Res. 1974;74:149–55.CrossRefPubMedGoogle Scholar
  7. Jones EG. Anatomy, development and physiology of the corpus callosum. In: Reeves AG, editor. New York: Plenum; 1985.CrossRefGoogle Scholar
  8. Killackey HP. The organization of somato-sensory callosal projections: a new interpretation. In: Reeves AG, editor. Epilepsy and the corpus callosum. New York: Plenum; 1985. p. 41–53.CrossRefGoogle Scholar
  9. Killackey HP, Chalupa LM. Ontogenetic changes in the distribution of callosal projection neurons in the post central gyrus of the fetal rhesus monkey. J Comp Neurol. 1986;244:331–48.CrossRefPubMedGoogle Scholar
  10. Marcus EM. Generalized seizure models and the corpus callosum. In: Reeves AG, editor. Epilepsy and the corpus callosum. New York: Plenum; 1985. p. 131–206.CrossRefGoogle Scholar
  11. Marcus EM, Watson W, Jacobson S. Role of the corpus callosum in bilateral synchronous discharges induced by intravenous pentylenetetrazol. Neurology. 1969;19:309.Google Scholar
  12. Martin JH. Cortical neurons, the EEG and the mechanisms of epilepsy. In: Kandel ER, Schwartz JH, editors. Principles of neural science. 2nd ed. New York: Elsevier; 1985. p. 636–47.Google Scholar
  13. McCulloch WS. Cortico-cortical connections. In: Bucy PC, editor. The precentral motor cortex. Urbana, IL: University of Illinois Press; 1944. p. 211–42.Google Scholar
  14. McNamara JC. Excitatory amino acid receptors and epilepsy. Curr Opin Neurol Neurosurg. 1993;6:583–7.PubMedGoogle Scholar
  15. Meyer BU, Roricht S, Grafin von Einsiedel H, et al. Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain. 1995;118:429–40.CrossRefPubMedGoogle Scholar
  16. Morrison RS, Dempsey EW. A study of thalamocortical relations. Am J Physiol. 1942;135:281–92.Google Scholar
  17. Myers RE. General discussion: phylogenetic studies of commissural connections. In: Ettlinger EG, editor. Functions of the corpus callosum. Boston: Little Brown & Company; 1965. p. 138–42.Google Scholar
  18. Pandya DN, Rosene DL. Some observations on trajectories and topography of commissural fibers. In: Reeves AG, editor. Epilepsy and the corpus callosum. New York: Plenum Press; 1985. p. 21–39.CrossRefGoogle Scholar
  19. Purpura DP. Relationship of seizure susceptibility to morphologic and physiologic properties of normal and abnormal immature cortex. In: Kellaway F, Petersen I, editors. Neurological and electroencephalographic correlative studies in infancy. New York: Grune and Stratton; 1964. p. 117–57.Google Scholar
  20. Scheibel ME, Scheibel AB. Structural organization of non-specific thalamic nuclei and their projection toward the cortex. Brain Res. 1967;6:60–94.CrossRefPubMedGoogle Scholar
  21. Spencer WA, Kandel ER. Cellular and integrative properties of hippocampal pyramidal cells and the comparative electrophysiology of cortical neurons. Int J Neurol. 1968;6:266–96.PubMedGoogle Scholar
  22. Starzl TE, Whitlock DG. Diffuse thalamic projection system in the monkey. J Neurophysiol. 1952;15:449–68.PubMedPubMedCentralGoogle Scholar
  23. Steriade M, Llinas R. The functional states of the thalamus and the associated neuronal interplay. Physiol Rev. 1988;68:649–742.PubMedGoogle Scholar
  24. Velasco M, Lindsley DB. Role of orbital cortex in regulation of the thalamocortical electrical activity. Science. 1965;149:1375–7.CrossRefPubMedGoogle Scholar
  25. Von Economo C. The cytoarchitectonics of the human cerebral cortex. London: Oxford University Press; 1929.Google Scholar
  26. Walker AE. The patterns of propagation of epileptic discharge. In: Schaltenbrand G, Woolsey CW, editors. Cerebral localization and organization. Madison: University of Wisconsin Press; 1964. p. 95–111.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Stanley Jacobson
    • 1
  • Elliott M. Marcus
    • 2
  • Stanley Pugsley
    • 3
  1. 1.BostonUSA
  2. 2.Jamaica PlainUSA
  3. 3.South Abington Twp.USA

Personalised recommendations