Skip to main content

Heteromers Form Novel Signaling Complexes

  • Chapter
  • First Online:
Book cover G-Protein-Coupled Receptor Dimers

Part of the book series: The Receptors ((REC,volume 33))

Abstract

Heteromers of G protein-coupled receptors offer the potential for a vast array of signaling partners. Research over the last decade has focused on identifying different heteromer complexes and their signaling components in an effort to understand their cellular and physiological functions. Heteromer complexes may serve a modulatory role or form completely novel signaling platforms within the cell. This chapter reviews canonical and biased signaling pathways of GPCR heteromers with a focus on their signaling capabilities and cellular localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oldham WM, Hamm HE. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol. 2008;9:60–71.

    Article  CAS  PubMed  Google Scholar 

  2. Laugwitz KL, et al. The human thyrotropin receptor: a heptahelical receptor capable of stimulating members of all four G protein families. Proc Natl Acad Sci U S A. 1996;93:116–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lefkowitz RJ, Daaka Y, Luttrell LM. Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase a. Nature. 1997;390:88–91.

    Article  PubMed  Google Scholar 

  4. Okamoto T, et al. Identification of a Gs activator region of the beta 2-adrenergic receptor that is autoregulated via protein kinase A-dependent phosphorylation. Cell. 1991;67:723–30.

    Article  CAS  PubMed  Google Scholar 

  5. Tesmer JJ, Sunahara RK, Gilman AG, Sprang SR. Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. Science. 1997;278:1907–16.

    Article  CAS  PubMed  Google Scholar 

  6. Slep KC, et al. Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 Å. Nature. 2001;409:1071–7.

    Article  CAS  PubMed  Google Scholar 

  7. Chen Z, Singer WD, Sternweis PC, Sprang SR. Structure of the p115RhoGEF rgRGS domain–Gα13/i1 chimera complex suggests convergent evolution of a GTPase activator. Nat Struct Mol Biol. 2005;12:191–7.

    Article  CAS  PubMed  Google Scholar 

  8. Tesmer VM, Kawano T, Shankaranarayanan A, Kozasa T, Tesmer JJG. Snapshot of activated G proteins at the membrane: the Gαq-GRK2-Gßγ complex. Science (80- ). 2005;310

    Google Scholar 

  9. Smrcka AV. G protein βγ subunits: central mediators of G protein-coupled receptor signaling. Cell Mol life Sci C. 2008;65:2191–214.

    Article  CAS  Google Scholar 

  10. Milligan G, Kostenis E. Heterotrimeric G-proteins: a short history. Br J Pharmacol. 2006;147:S46–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dupré DJ, Robitaille M, Rebois RV, Hébert TE. The role of Gbetagamma subunits in the organization, assembly, and function of GPCR signaling complexes. Annu Rev Pharmacol Toxicol. 2009;49:31–56.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Khan SM, et al. The expanding roles of Gβγ subunits in G protein-coupled receptor signaling and drug action. Pharmacol Rev. 2013;65:545–77.

    Article  CAS  PubMed  Google Scholar 

  13. García-Regalado A, et al. G protein-coupled receptor-promoted trafficking of Gbeta1gamma2 leads to AKT activation at endosomes via a mechanism mediated by Gbeta1gamma2-Rab11a interaction. Mol Biol Cell. 2008;19:4188–200.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Navarro G, et al. Quaternary structure of a G-protein-coupled receptor heterotetramer in complex with Gi and Gs. BMC Biol. 2016;14:26.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pisterzi LF, et al. Oligomeric size of the m2 muscarinic receptor in live cells as determined by quantitative fluorescence resonance energy transfer. J Biol Chem. 2010;285:16723–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Patowary S, et al. The muscarinic M 3 acetylcholine receptor exists as two differently sized complexes at the plasma membrane. Biochem J. 2013;452:303–12.

    Article  CAS  PubMed  Google Scholar 

  17. Jonas KC, Fanelli F, Huhtaniemi IT, Hanyaloglu AC. Single molecule analysis of functionally asymmetric G protein-coupled receptor (GPCR) oligomers reveals diverse spatial and structural assemblies. J Biol Chem. 2015;290:3875–92.

    Article  CAS  PubMed  Google Scholar 

  18. Granier S, Kobilka B. A new era of GPCR structural and chemical biology. Nat Chem Biol. 2012;8:670–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Manglik A, et al. Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature. 2012;485:321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nygaard R, et al. The dynamic process of β(2)-adrenergic receptor activation. Cell. 2013;152:532–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kenakin T. Agonist-receptor efficacy II: agonist trafficking of receptor signals. Trends Pharmacol Sci. 1995;16:232–8.

    Article  CAS  PubMed  Google Scholar 

  22. Eason MG, Jacinto MT, Liggett SB. Contribution of ligand structure to activation of alpha 2-adrenergic receptor subtype coupling to Gs. Mol Pharmacol. 1994;45:696–702.

    CAS  PubMed  Google Scholar 

  23. Holloway AC, et al. Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1A angiotensin receptors. Mol Pharmacol. 2002;61

    Google Scholar 

  24. Wei H, et al. Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci U S A. 2003;100:10782–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rajagopal K, et al. Beta-arrestin2-mediated inotropic effects of the angiotensin II type 1A receptor in isolated cardiac myocytes. Proc Natl Acad Sci U S A. 2006;103:16284–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Violin JD, Crombie AL, Soergel DG, Lark MW. Biased ligands at G-protein-coupled receptors: promise and progress. Trends Pharmacol Sci. 2014;35:308–16.

    Article  CAS  PubMed  Google Scholar 

  27. Kalso E, Edwards JE, Moore AR, McQuay HJ. Opioids in chronic non-cancer pain: systematic review of efficacy and safety. Pain. 2004;112:372–80.

    Article  CAS  PubMed  Google Scholar 

  28. Bohn LM, et al. Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science. 1999;286:2495–8.

    Article  CAS  PubMed  Google Scholar 

  29. Bohn LM, Gainetdinov RR, Lin F-T, Lefkowitz RJ, Caron MG. |[mu]|-opioid receptor desensitization by |[beta]|-arrestin-2 determines morphine tolerance but not dependence. Nature. 2000;408:720–3.

    Article  CAS  PubMed  Google Scholar 

  30. DeWire SM, et al. A G protein-biased ligand at the mu-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared to morphine. J Pharmacol Exp Ther. 2013;

    Google Scholar 

  31. Soergel DG, et al. Biased agonism of the μ-opioid receptor by TRV130 increases analgesia and reduces on-target adverse effects versus morphine: a randomized, double-blind, placebo-controlled, crossover study in healthy volunteers. Pain. 2014;155:1829–35.

    Article  CAS  PubMed  Google Scholar 

  32. Violin JD, Crombie AL, Soergel DG, Lark MW. Biased ligands at G-protein-coupled receptors: promise and progress. Trends Pharmacol Sci. 2014;35:308–16.

    Article  CAS  PubMed  Google Scholar 

  33. Canals M, Sexton PM, Christopoulos A. Allostery in GPCRs: ‘MWC’ revisited. Trends Biochem Sci. 2011;36:663–72.

    Article  CAS  PubMed  Google Scholar 

  34. Wootten D, Christopoulos A, Sexton PM. Emerging paradigms in GPCR allostery: implications for drug discovery. Nat Rev Drug Discov. 2013;12:630–44.

    Article  CAS  PubMed  Google Scholar 

  35. Viñals X, et al. Cognitive impairment induced by Delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid cb1 and serotonin 5-HT2A receptors. PLoS Biol. 2015;13:e1002194.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ferré S, et al. Building a new conceptual framework for receptor heteromers. Nat Chem Biol. 2009;5:131–4.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ferrada C, et al. Marked changes in signal transduction upon heteromerization of dopamine D1 and histamine H3 receptors. Br J Pharmacol. 2009;157:64–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lefkowitz RJ, Shenoy SK. Transduction of receptor signals by beta-arrestins. Science. 2005;308:512–7.

    Article  CAS  PubMed  Google Scholar 

  39. Shenoy SK, Lefkowitz RJ. β-arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci. 2011;32:521–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rajagopal S, et al. Beta-arrestin- but not G protein-mediated signaling by the “decoy” receptor CXCR7. Proc Natl Acad Sci U S A. 2010;107:628–32.

    Article  PubMed  Google Scholar 

  41. Levoye A, Balabanian K, Baleux F, Bachelerie F, Lagane B. CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood. 2009;113

    Google Scholar 

  42. Décaillot FM, et al. CXCR7/CXCR4 heterodimer constitutively recruits beta-arrestin to enhance cell migration. J Biol Chem. 2011;286:32188–97.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bellot M, et al. Dual agonist occupancy of AT1-R–α2C-AR heterodimers results in atypical Gs-PKA signaling. Nat Chem Biol. 2015;11:271–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hanyaloglu, A. C. & Zastrow, M. von. Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu Rev Pharmacol Toxicol 48, 537–568 (2008).

    Google Scholar 

  45. Sorkin A, von Zastrow M. Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol. 2009;10:609–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Roed SN, et al. Functional consequences of glucagon-like peptide-1 receptor cross-talk and trafficking. J Biol Chem. 2015;290:1233–43.

    Article  CAS  PubMed  Google Scholar 

  47. Uto-Konomi A, et al. CXCR7 agonists inhibit the function of CXCL12 by down-regulation of CXCR4. Biochem Biophys Res Commun. 2013;431

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. McCormick Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

McCormick, P.J., Botta, J. (2017). Heteromers Form Novel Signaling Complexes. In: Herrick-Davis, K., Milligan, G., Di Giovanni, G. (eds) G-Protein-Coupled Receptor Dimers. The Receptors, vol 33. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60174-8_19

Download citation

Publish with us

Policies and ethics