Skip to main content

Interaction of Membrane Cholesterol with GPCRs: Implications in Receptor Oligomerization

  • Chapter
  • First Online:
G-Protein-Coupled Receptor Dimers

Part of the book series: The Receptors ((REC,volume 33))

Abstract

G protein-coupled receptors (GPCRs) are the largest family of proteins involved in signal transduction across cell membranes, and represent major drug targets in all clinical areas. Oligomerization of GPCRs and its implications in drug discovery constitute an exciting area in contemporary biology. In this review, we have highlighted the role of membrane cholesterol and the actin cytoskeleton in GPCR oligomerization, using a combined approach of homo-FRET and coarse-grain molecular dynamics simulations. In the process, we have highlighted experimental and computational methods that have been successful in analyzing different facets of GPCR association. Analysis of photobleaching homo-FRET data provided novel information about the presence of receptor oligomers under varying conditions. Molecular dynamics simulations have helped to pinpoint transmembrane helices that are involved in forming the receptor dimer interface, and this appears to be dependent on membrane cholesterol content. This gives rise to the exciting and challenging possibility of age and tissue dependence of drug efficacy. We envision that GPCR oligomerization could be a game changer in future drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albizu L, Cottet M, Kralikova M, et al. Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol. 2010;6:587–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Allen JA, Roth BL. Strategies to discover unexpected targets for drugs active at G protein-coupled receptors. Annu Rev Pharmacol Toxicol. 2011;51:117–44.

    Article  CAS  PubMed  Google Scholar 

  3. Ayoub MA, Zhang Y, Kelly RS, et al. Functional interaction between angiotensin II receptor type 1 and chemokine (C-C motif) receptor 2 with implications for chronic kidney disease. PLoS One. 2015;10:e0119803.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Borst JW, Hink MA, van Hoek A, et al. Effects of refractive index and viscosity on fluorescence and anisotropy decays of enhanced cyan and yellow fluorescent proteins. J Fluoresc. 2005;15:153–60.

    Article  CAS  PubMed  Google Scholar 

  5. Bouaziz E, Emerit MB, Vodjdani G, et al. Neuronal phenotype dependency of agonist-induced internalization of the 5-HT1A serotonin receptor. J Neurosci. 2014;34:282–94.

    Article  CAS  PubMed  Google Scholar 

  6. Chakraborty H, Chattopadhyay A. Excitements and challenges in GPCR oligomerization: molecular insight from FRET. ACS Chem Neurosci. 2015;6:199–206.

    Article  CAS  PubMed  Google Scholar 

  7. Chattopadhyay A. GPCRs: lipid-dependent membrane receptors that act as drug targets. Adv Biol. 2014;2014:143023.

    Article  Google Scholar 

  8. Clayton AHA, Chattopadhyay A. Taking care of bystander FRET in a crowded cell membrane environment. Biophys J. 2014;106:1227–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cooke RM, Brown AJH, Marshall FH, et al. Structures of G protein-coupled receptors reveal new opportunities for drug discovery. Drug Discov Today. 2015;20:1355–64.

    Article  CAS  PubMed  Google Scholar 

  10. Ferré S. The GPCR heterotetramer: challenging classical pharmacology. Trends Pharmacol Sci. 2015;36:145–52.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ganguly S, Clayton AHA, Chattopadhyay A. Organization of higher-order oligomers of the serotonin1A receptor explored utilizing homo-FRET in live cells. Biophys J. 2011;100:361–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gether U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev. 2000;21:90–113.

    Article  CAS  PubMed  Google Scholar 

  13. Gimpl G. Interaction of G protein coupled receptors and cholesterol. Chem Phys Lipids. 2016;199:61–73.

    Article  CAS  PubMed  Google Scholar 

  14. González-Maeso J, Ang RL, Yuen T, et al. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature. 2008;452:93–7.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Guixà-González R, Javanainen M, Gómez-Soler M, et al. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors. Sci Rep. 2016;6:19839.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Heilker R, Wolff M, Tautermann CS, et al. G-protein-coupled receptor-focused drug discovery using a target class platform approach. Drug Discov Today. 2009;14:231–40.

    Article  CAS  PubMed  Google Scholar 

  17. Heng BC, Aubel D, Fussenegger M. An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases. Biotechnol Adv. 2013;31:1676–94.

    Article  CAS  PubMed  Google Scholar 

  18. Herrick-Davis K, Grinde E, Cowan A, et al. Fluorescence correlation spectroscopy analysis of serotonin, adrenergic, muscarinic, and dopamine receptor dimerization: the oligomer number puzzle. Mol Pharmacol. 2013;84:630–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang J, Chen S, Zhang JJ, et al. Crystal structure of oligomeric β1-adrenergic G protein-coupled receptors in ligand-free basal state. Nat Struct Mol Biol. 2013;20:419–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Insel PA, Tang C-M, Hahntow I, et al. Impact of GPCRs in clinical medicine: monogenic diseases, genetic variants and drug targets. Biochim Biophys Acta. 2007;1768:994–1005.

    Article  CAS  PubMed  Google Scholar 

  21. Jacobson KA. New paradigms in GPCR drug discovery. Biochem Pharmacol. 2015;98:541–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jafurulla M, Chattopadhyay A. Membrane lipids in the function of serotonin and adrenergic receptors. Curr Med Chem. 2013;20:47–55.

    Article  CAS  PubMed  Google Scholar 

  23. Jafurulla M, Tiwari S, Chattopadhyay A. Identification of cholesterol recognition amino acid consensus (CRAC) motif in G-protein coupled receptors. Biochem Biophys Res Commun. 2011;404:569–73.

    Article  CAS  PubMed  Google Scholar 

  24. Kasai RS, Kusumi A. Single-molecule imaging revealed dynamic GPCR dimerization. Curr Opin Cell Biol. 2014;27:78–86.

    Article  CAS  PubMed  Google Scholar 

  25. Lidke DS, Nagy P, Barisas BG, et al. Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET). Biochem Soc Trans. 2003;31:1020–7.

    Article  CAS  PubMed  Google Scholar 

  26. Lohse MJ. Dimerization in GPCR mobility and signaling. Curr Opin Pharmacol. 2010;10:53–8.

    Article  CAS  PubMed  Google Scholar 

  27. Martin M, Dotti CG, Ledesma MD. Brain cholesterol in normal and pathological aging. Biochim Biophys Acta. 2010;1801:934–44.

    Article  CAS  PubMed  Google Scholar 

  28. Meyer BH, Segura J-M, Martinez KL, et al. FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc Natl Acad Sci U S A. 2006;103:2138–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Milligan G. The role of dimerisation in the cellular trafficking of G-protein-coupled receptors. Curr Opin Pharmacol. 2010;10:23–9.

    Article  CAS  PubMed  Google Scholar 

  30. Mondal S, Johnston JM, Wang H, et al. Membrane driven spatial organization of GPCRs. Sci Rep. 2013;3:2909.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Oates J, Watts A. Uncovering the intimate relationship between lipids, cholesterol and GPCR activation. Curr Opin Struct Biol. 2011;21:802–7.

    Article  CAS  PubMed  Google Scholar 

  32. Oddi S, Dainese E, Fezza F, et al. Functional characterization of putative cholesterol binding sequence (CRAC) in human type-1 cannabinoid receptor. J Neurochem. 2011;116:858–65.

    Article  CAS  PubMed  Google Scholar 

  33. Paila YD, Chattopadhyay A. The function of G-protein coupled receptors and membrane cholesterol: specific or general interaction? Glycoconj J. 2009;26:711–20.

    Article  CAS  PubMed  Google Scholar 

  34. Paila YD, Chattopadhyay A. Membrane cholesterol in the function and organization of G-protein coupled receptors. Subcell Biochem. 2010;51:439–66.

    Article  CAS  PubMed  Google Scholar 

  35. Paila YD, Kombrabail M, Krishnamoorthy G, et al. Oligomerization of the serotonin1A receptor in live cells: a time-resolved fluorescence anisotropy approach. J Phys Chem B. 2011;115:11439–47.

    Article  CAS  PubMed  Google Scholar 

  36. Paila YD, Tiwari S, Chattopadhyay A. Are specific nonannular cholesterol binding sites present in G-protein coupled receptors? Biochim Biophys Acta. 2009;1788:295–302.

    Article  CAS  PubMed  Google Scholar 

  37. Pal S, Chakraborty H, Bandari S, et al. Molecular rheology of neuronal membranes explored using a molecular rotor: implications for receptor function. Chem Phys Lipids. 2016;196:69–75.

    Article  CAS  PubMed  Google Scholar 

  38. Palczewski K. Oligomeric forms of G protein-coupled receptors (GPCRs). Trends Biochem Sci. 2010;35:595–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Periole X, Huber T, Marrink S-J, et al. G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. J Am Chem Soc. 2007;129:10126–32.

    Article  CAS  PubMed  Google Scholar 

  40. Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nat Rev Mol Cell Biol. 2002;3:639–50.

    Article  CAS  PubMed  Google Scholar 

  41. Piston DW, Kremers G-J. Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem Sci. 2007;32:407–14.

    Article  CAS  PubMed  Google Scholar 

  42. Prasanna X, Chattopadhyay A, Sengupta D. Cholesterol modulates the dimer interface of the β 2-adrenergic receptor via cholesterol occupancy sites. Biophys J. 2014;106:1290–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Prasanna X, Chattopadhyay A, Sengupta D. Role of lipid-mediated effects in β2-adrenergic receptor dimerization. Adv Exp Med Biol. 2015;842:247–61.

    Article  CAS  PubMed  Google Scholar 

  44. Prasanna X, Sengupta D, Chattopadhyay A. Cholesterol-dependent conformational plasticity in GPCR dimers. Sci Rep. 2016;6:31858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Provasi D, Boz MB, Johnston JM, et al. Preferred supramolecular organization and dimer interfaces of opioid receptors from simulated self-association. PLoS Comput Biol. 2015;11:e1004148.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pucadyil TJ, Chattopadhyay A. Role of cholesterol in the function and organization of G-protein coupled receptors. Prog Lipid Res. 2006;45:295–333.

    Article  CAS  PubMed  Google Scholar 

  47. Pucadyil TJ, Chattopadhyay A. Cholesterol depletion induces dynamic confinement of the G-protein coupled serotonin1A receptor in the plasma membrane of living cells. Biochim Biophys Acta. 2007;1768:655–68.

    Article  CAS  PubMed  Google Scholar 

  48. Pydi SP, Jafurulla M, Wai L, et al. Cholesterol modulates bitter taste receptor function. Biochim Biophys Acta. 2016;1858:2081–7.

    Article  CAS  PubMed  Google Scholar 

  49. Rosenbaum DM, Rasmussen SGF, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature. 2009;459:356–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schlyer S, Horuk R. I want a new drug: G-protein-coupled receptors in drug development. Drug Discov Today. 2006;11:481–93.

    Article  CAS  PubMed  Google Scholar 

  51. Sengupta D, Chattopadhyay A. Identification of cholesterol binding sites in the serotonin1A receptor. J Phys Chem B. 2012;116:12991–6.

    Article  CAS  PubMed  Google Scholar 

  52. Sengupta D, Chattopadhyay A. Molecular dynamics simulations of GPCR-cholesterol interaction: an emerging paradigm. Biochim Biophys Acta. 2015;1848:1775–82.

    Article  CAS  PubMed  Google Scholar 

  53. Shanti K, Chattopadhyay A. A new paradigm in the functioning of G-protein-coupled receptors. Curr Sci. 2000;79:402–3.

    CAS  Google Scholar 

  54. Singh P, Saxena R, Srinivas G, et al. Cholesterol biosynthesis and homeostasis in regulation of the cell cycle. PLoS One. 2013;8:e58833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Smiljanic K, Vanmierlo T, Djordjevic AM, et al. Aging induces tissue-specific changes in cholesterol metabolism in rat brain and liver. Lipids. 2013;48:1069–77.

    Article  CAS  PubMed  Google Scholar 

  56. Terrillon S, Bouvier M. Roles of G-protein-coupled receptor dimerization. EMBO Rep. 2004;5:30–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thomsen W, Frazer J, Unett D. Functional assays for screening GPCR targets. Curr Opin Biotechnol. 2005;16:655–65.

    CAS  PubMed  Google Scholar 

  58. Tramier M, Piolot T, Gautier I, et al. Homo-FRET versus hetero-FRET to probe homodimers in living cells. Methods Enzymol. 2003;360:580–97.

    Article  CAS  PubMed  Google Scholar 

  59. Varma R, Mayor S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature. 1998;394:798–801.

    Article  CAS  PubMed  Google Scholar 

  60. Woehler A, Wlodarczyk J, Ponimaskin EG. Specific oligomerization of the 5-HT1A receptor in the plasma membrane. Glycoconj J. 2009;26:749–56.

    Article  CAS  PubMed  Google Scholar 

  61. Yeagle PL. Non-covalent binding of membrane lipids to membrane proteins. Biochim Biophys Acta. 2014;1838:1548–59.

    Article  CAS  PubMed  Google Scholar 

  62. Yeow EKL, Clayton AHA. Enumeration of oligomerization states of membrane proteins in living cells by homo-FRET spectroscopy and microscopy: theory and application. Biophys J. 2007;92:3098–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang Y, DeVries ME, Skolnick J. Structure modeling of all identified G protein-coupled receptors in the human genome. PLoS Comput Biol. 2006;2:e13.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

D.S. and A.C. gratefully acknowledge the support of Ramalingaswami Fellowship from the Department of Biotechnology, and J.C. Bose Fellowship from the Department of Science and Technology, Govt. of India, respectively. G.A.K. thanks the Council of Scientific and Industrial Research (Govt. of India) for the award of a Senior Research Fellowship. A.C. is an Adjunct Professor of Tata Institute of Fundamental Research (Mumbai), RMIT University (Melbourne, Australia), Indian Institute of Technology (Kanpur), and Indian Institute of Science Education and Research (Mohali). We thank members of the Chattopadhyay laboratory for their comments and discussions, and Xavier Prasanna for help with the figures.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Durba Sengupta or Amitabha Chattopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sengupta, D., Kumar, G.A., Chattopadhyay, A. (2017). Interaction of Membrane Cholesterol with GPCRs: Implications in Receptor Oligomerization. In: Herrick-Davis, K., Milligan, G., Di Giovanni, G. (eds) G-Protein-Coupled Receptor Dimers. The Receptors, vol 33. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60174-8_16

Download citation

Publish with us

Policies and ethics