Skip to main content

Assistive IoT: Deployment Scenarios and Challenges

  • Chapter
  • First Online:
Book cover Internet of Things and Smart Environments

Abstract

For people living with some sensory or cognitive impairment, including many older adults, the disabling or empowering effects of physical and social settings can be crucial. An inclusive environment that nurtures participation is based on considering the needs of an individual alongside the affordability and social constraints, employing available technology and knowledge in efficient manners. While the assistive IoT and smart environments may offer unique opportunities, they may share similar issues with many other contemporary approaches and AT that stay as prototypes, hindering their adoption and widespread employment. This chapter presents some of the implementations of the IoT and smart environments for aged care and empowering people living with dementia or some sensory impairment. It also discusses some of the challenges regarding their deployments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coetzee, L., & Olivrin, G. (2012). Inclusion through the Internet of Things. INTECH Open Access Publisher.

    Google Scholar 

  2. World Health Organization. (2011). World report on disability. World Health Organization.

    Google Scholar 

  3. Mano, L. Y., Faiçal, B. S., Nakamura, L. H., Gomes, P. H., Libralon, G. L., Meneguete, R. I. & Ueyama, J. (2016). Exploiting IoT technologies for enhancing Health Smart Homes through patient identification and emotion recognition. Computer Communications, 89, 178–190.

    Google Scholar 

  4. Ram, S. (2016). Internet-of-Things (IoT) Advances Home Healthcare for Seniors. Available online, http://www.embeddedintel.com/special_features.php?article=2721 [Accessed 10-Oct-2016].

  5. Chen, C., Helal, S., de Deugd, S., Smith, A., & Chang, C. K. (2012). Toward a collaboration model for smart spaces. In Software Engineering for Sensor Network Applications (SESENA), 2012 Third International Workshop on (pp. 37–42).

    Google Scholar 

  6. Deen, M. J. (2015). Information and communications technologies for elderly ubiquitous healthcare in a smart home. Personal and Ubiquitous Computing, 19(3–4), 573–599.

    Google Scholar 

  7. Celentano, U., & Röning, J. (2015). Framework for dependable and pervasive eHealth services. In Internet of Things (WF-IoT), 2015 IEEE 2nd World Forum on (pp. 634–639).

    Google Scholar 

  8. Frauenberger, C. (2015). Disability and technology: A critical realist perspective. In Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility (pp. 89–96).

    Google Scholar 

  9. Helal, S., Bose, R., Pickles, S., Elzabadani, H., King, J., & Kaddourah, Y. (2008). The Gator Tech Smart House: A Programmable Pervasive Space. The Engineering Handbook of Smart Technology for Aging, Disability, and Independence, 693–709.

    Google Scholar 

  10. Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., & Jansen, E. (2005). The gator tech smart house: A programmable pervasive space. Computer, 38(3), 50–60.

    Article  Google Scholar 

  11. Li, R., Lu, B., & McDonald-Maier, K. D. (2015). Cognitive assisted living ambient system: a survey. Digital Communications and Networks, 1(4), 229–252.

    Article  Google Scholar 

  12. Federici, S., Tiberio, L., & Scherer, M. J. (2014). Ambient Assistive Technology for People with Dementia: An Answer to the Epidemiologic Transition. New Research on Assistive Technologies: Uses and Limitations. New York, NY: Nova Publishers, 1–30.

    Google Scholar 

  13. Fuxreiter, T., Mayer, C., Hanke, S., Gira, M., Sili, M., & Kropf, J. (2010). A modular platform for event recognition in smart homes. In e-Health Networking Applications and Services (Healthcom), 2010 12th IEEE International Conference on (pp. 1–6).

    Google Scholar 

  14. Maier, E., & Kempter, G. (2010). ALADIN-a Magic Lamp for the Elderly? Handbook of Ambient Intelligence and Smart Environments, 1201–1227.

    Google Scholar 

  15. Jiang, L., Tang, Z., Liu, Z., Chen, W., Kitamura, K. I., & Nemoto, T. (2012). Automatic sleep monitoring system for home healthcare. In Biomedical and Health Informatics (BHI), 2012 IEEE-EMBS International Conference on (pp. 894–897).

    Google Scholar 

  16. Zhu, X., Zhou, X., Chen, W., Kitamura, K. I., & Nemoto, T. (2014). Estimation of Sleep Quality of Residents in Nursing Homes Using an Internet-Based Automatic Monitoring System. In Ubiquitous Intelligence and Computing, 2014 IEEE 11th Intl Conf on and IEEE 11th Intl Conf on and Autonomic and Trusted Computing, and IEEE 14th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UTC-ATC-ScalCom) (pp. 659–665).

    Google Scholar 

  17. Fides-Valero, Á., Freddi, M., Furfari, F., & Tazari, M. R. (2008). The PERSONA framework for supporting context-awareness in open distributed systems. Ambient Intelligence, 91–108.

    Google Scholar 

  18. Meiland, F., Hattink, B., Overmars-Marx, T., De Boer, M., Jedlitschka, A., Ebben, P., Dröes, R. (2014). Participation of end users in the design of assistive technology for people with mild to severe cognitive problems; the European Rosetta project. 26(5), 769–779.

    Google Scholar 

  19. Corchado, J. M., Bajo, J., & Abraham, A. (2008). GerAmi: Improving healthcare delivery in geriatric residences. IEEE Intelligent Systems, 23(2).

    Google Scholar 

  20. Rodriguez, M. D., Favela, J., Martínez, E. A., & Muñoz, M. A. (2004). Location-aware access to hospital information and services. IEEE Transactions on information technology in biomedicine, 8(4), 448–455.

    Article  Google Scholar 

  21. Cecilio, J.; Duarte, K.; Furtado, P. (2015). BlindeDroid: An information tracking system for real-time guiding of blind people. Procedia Comput. Sci. 2015, 52, 113–120.

    Google Scholar 

  22. Martinez-Sala, A. S., Losilla, F., Sánchez-Aarnoutse, J. C., & García-Haro, J. (2015). Design, implementation and evaluation of an indoor navigation system for visually impaired people. Sensors, 15(12), 32168–32187.

    Article  Google Scholar 

  23. Haverinen, J., & Kemppainen, A. (2009). Global indoor self-localization based on the ambient magnetic field. Robotics and Autonomous Systems, 57(10), 1028–1035.

    Article  Google Scholar 

  24. Halewood, A. M. K., Sabino, M., Sudan, R., & Yadunath, D. (2015). Six digital technologies to watch. World Bank. Available online, http://documents.worldbank.org/curated/en/896971468194972881/310436360_201602630200216/additional/102725-PUB-Replacement- PUBLIC.pdf [Accessed 10-Oct-2016].

    Google Scholar 

  25. International Telecommunication Union (2017). World Telecommunication/ICT Indicators database 2016. ITU. Available online, http://www.itu.int/en/ITU-D/Statistics/Pages/publications/wtid.aspx [Accessed 10-Feb-2017].

  26. Csapó, Á., Wersényi, G., Nagy, H., & Stockman, T. (2015). A survey of assistive technologies and applications for blind users on mobile platforms: a review and foundation for research. Journal on Multimodal User Interfaces, 9(4), 275–286.

    Article  Google Scholar 

  27. Pym, H. (2015). Technology helps visually impaired navigate the Tube. BBC News. Available online, http://www.bbc.com/news/health-31754365 [Accessed 10-Oct-2016].

  28. Wayfinder. (2016). Wayfindr- Empowering vision impaired people. Available online, https://www.wayfindr.net/ [Accessed 10-Oct-2016].

  29. Cities Unlocked. (2016). Cities Unlocked: Realising the potential of people and places. Available online, http://www.citiesunlocked.org.uk/ [Accessed: 10-Oct-2016].

  30. Pham, C., & Cousin, P. (2013). Streaming the sound of smart cities: experimentations on the SmartSantander test-bed. In Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing (pp. 611–618).

    Google Scholar 

  31. Swanepoel, D. W. (2017). Smartphone-based National Hearing Test Launched in South Africa. The Hearing Journal, 70(1), 14–16.

    Article  Google Scholar 

  32. Garcia-Espinosa, E., Longoria-Gandara, O., Veloz-Guerrero, A., & Riva, G. G. (2015). Hearing aid devices for smart cities: A survey. In Smart Cities Conference (ISC2), 2015 IEEE First International (pp. 1–5).

    Google Scholar 

  33. Mecklenburger, J., & Groth, T. (2016). Wireless Technologies and Hearing Aid Connectivity. In Hearing Aids (pp. 131–149). Springer International Publishing.

    Google Scholar 

  34. Wang, D. (2017). Deep learning reinvents the hearing aid. IEEE Spectrum, 54(3), 32–37.

    Article  Google Scholar 

  35. Mohammed, S., Moreno, J., Kong, K., & Amirat, Y. Eds.). (2015). (Intelligent Assistive Robots: Recent Advances in Assistive Robotics for Everyday Activities (Vol. 106). Springer.

    Google Scholar 

  36. Pollack, M. E., Brown, L., Colbry, D., Orosz, C., Peintner, B., Ramakrishnan, S., & Thrun, S. (2002). Pearl: A mobile robotic assistant for the elderly. In AAAI workshop on automation as eldercare (Vol. 2002, pp. 85–91).

    Google Scholar 

  37. Bemelmans, R., Gelderblom, G. J., Jonker, P., & De Witte, L. (2012). Socially assistive robots in elderly care: A systematic review into effects and effectiveness. Journal of the American Medical Directors Association, 13(2), 114–120.

    Article  Google Scholar 

  38. Kachouie, R., Sedighadeli, S., Khosla, R., & Chu, M. T. (2014). Socially assistive robots in elderly care: a mixed-method systematic literature review. International Journal of Human-Computer Interaction, 30(5), 369–393.

    Article  Google Scholar 

  39. Yelamarthi, K., Haas, D., Nielsen, D., & Mothersell, S. (2010). RFID and GPS integrated navigation system for the visually impaired. In Circuits and Systems (MWSCAS), 2010 53rd IEEE International Midwest Symposium on (pp. 1149–1152).

    Google Scholar 

  40. Caldara, M., Locatelli, P., Comotti, D., Galizzi, M., Re, V., Dellerma, N., & Pessione, M. (2015). Application of a wireless BSN for gait and balance assessment in the elderly. In Wearable and Implantable Body Sensor Networks (BSN), 2015 IEEE 12th International Conference on (pp. 1–6).

    Google Scholar 

  41. Pivato, P., Dalpez, S., Macii, D., & Petri, D. (2011). A wearable wireless sensor node for body fall detection. In Measurements and Networking Proceedings (M&N), 2011 IEEE International Workshop on (pp. 116–121).

    Google Scholar 

  42. Wong, D. L. T., & Lian, Y. (2012). A wearable wireless ECG sensor with real-time QRS detection for continuous cardiac monitoring. In Biomedical Circuits and Systems Conference (BioCAS), 2012 IEEE (pp. 112–115).

    Google Scholar 

  43. Qi, Y., Soh, C. B., Gunawan, E., & Low, K. S. (2014). A wearable wireless ultrasonic sensor network for human arm motion tracking. In Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE (pp. 5960–5963).

    Google Scholar 

  44. He, Z., & Bai, X. (2014). A wearable wireless body area network for human activity recognition. In Ubiquitous and Future Networks (ICUFN), 2014 Sixth International Conf on (pp. 115–119).

    Google Scholar 

  45. Margiotta, N., Avitabile, G., & Coviello, G. (2016). A wearable wireless system for gait analysis for early diagnosis of Alzheimer and Parkinson disease. In Electronic Devices, Systems and Applications (ICEDSA), 2016 5th International Conference on (pp. 1–4).

    Google Scholar 

  46. Khan, J. A., Akbar, H. A., Pervaiz, U., & Hassan, O. (2016). A wearable wireless sensor for cardiac monitoring. In Wearable and Implantable Body Sensor Networks (BSN), 2016 IEEE 13th International Conference on (pp. 61–65).

    Google Scholar 

  47. Federal Trade Commission. (2015). Internet of Things: Privacy & security in a connected world. Washington, DC: Federal Trade Commission.

    Google Scholar 

  48. BI Intelligence (2017) The smart cities report: Driving factors of development, top use cases, and market challenges for smart cities around the world. Available online, https://www.businessinsider.com.au/the-smart-cities-report-driving-factors-of-development-top-use-cases-andmarket- challenges-for-smart-cities-around-the-world-2016-10?r=US&IR=T [Accessed: 10-Oct-2016].

    Google Scholar 

  49. World Bank (2016). World Development Report 2016: Digital Dividends. Washington, DC: World Bank. doi:10.1596/978-1-4648-0671-1. License: Creative Commons Attribution CC BY 3.0 IGO. Available online, http://documents.worldbank.org/curated/en/896971468194972881/310436360_201602630200228/additional/102725-PUBReplacement-PUBLIC.pdf [Accessed 10-Oct-2016].

  50. Nolin, J., & Olson, N. (2016). The Internet of Things and convenience. Internet Research, 26(2), 360–376.

    Article  Google Scholar 

  51. Xiao, J., Joseph, S. L., Zhang, X., Li, B., Li, X., & Zhang, J. (2015). An assistive navigation framework for the visually impaired. IEEE Transactions on Human-Machine Systems, 45(5), 635–640.

    Article  Google Scholar 

  52. Elkhodr, M., Shahrestani, S., & Cheung, H. (2016). Emerging Wireless Technologies in the Internet of Things: a Comparative Study. arXiv preprint arXiv:1611.00861.

    Google Scholar 

  53. World Health Organization. (2015). WHO global disability action plan 2014–2021: Better health for all people with disability. World Health Organization.

    Google Scholar 

  54. Mankoff, J., Hayes, G. R., & Kasnitz, D. (2010). Disability studies as a source of critical inquiry for the field of assistive technology. In Proceedings of the 12th international ACM SIGACCESS conference on Computers and accessibility (pp. 3–10).

    Google Scholar 

  55. Nihei, M., & Fujie, M. G. (2012). Proposal for a New Development Methodology for Assistive Technology Based on a Psychological Model of Elderly People. INTECH Open Access Publisher.

    Google Scholar 

  56. Hamann, L. M. A., Airaldi, L. L., Molinas, M. E. B., Rujana, M., Torre, J., & Gramajo, S. (2015, December). Smart doorbell: An ICT solution to enhance inclusion of disabled people. In ITU Kaleidoscope: Trust in the Information Society (K-2015), 2015. (pp. 1–7).

    Google Scholar 

  57. Kleinman, Z. (2016). Smartwatch sales show sharp decline, report finds. BBC News. Available online, http://www.bbc.com/news/technology-37762239 [Accessed 10-Oct-2016].

  58. Kleinman, Z. (2017). Has wearable tech had its day? BBC News. Available online, http://www.bbc.com/news/technology-39101872 [Accessed 10-Oct-2016].

  59. Rawassizadeh, R., Price, B. A., & Petre, M. (2015). Wearables: Has the age of smartwatches finally arrived? Communications of the ACM, 58(1), 45–47.

    Article  Google Scholar 

  60. Jakicic, J. M., Davis, K. K., Rogers, R. J., King, W. C., Marcus, M. D., Helsel, D., & Belle, S. H. (2016). Effect of wearable technology combined with a lifestyle intervention on long-term weight loss: the IDEA randomized clinical trial. Jama, 316(11), 1161–1171. Available online, http://jamanetwork.com/journals/jama/fullarticle/2553448 [Accessed: 10-Oct-2016].

  61. Shinohara, K., & Wobbrock, J. O. (2011). In the shadow of misperception: assistive technology use and social interactions. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 705–714).

    Google Scholar 

  62. Hersh, M. A., & Johnson, M. A. (2008). Mobility: an overview. Assistive technology for visually impaired and blind people, 167–208. Springer London.

    Google Scholar 

  63. van den Heuvel, E., Jowitt, F., & McIntyre, A. (2012). Awareness, requirements and barriers to use of Assistive Technology designed to enable independence of people suffering from Dementia (ATD). Technology and Disability, 24(2), 139–148.

    Google Scholar 

  64. Grau, A. (2015). Can you trust your fridge? IEEE Spectrum, 52(3), 50–56.

    Google Scholar 

  65. Elkhodr, M., Shahrestani, S., & Cheung, H. (2016). The Internet of Things: new interoperability, management and security challenges, International Journal of Network Security and Its Applications, vol 8, no 2, pp 85–102.

    Google Scholar 

  66. Ahlmeyer, M., & Chircu, A. M. (2016). Securing the internet of things: A review. Issues in Information Systems, 17(4).

    Google Scholar 

  67. ALM, N., & ARNOTT, J. (2015). Smart Houses and Uncomfortable Homes. Studies in health technology and informatics, 217, 146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shahrestani, S. (2017). Assistive IoT: Deployment Scenarios and Challenges. In: Internet of Things and Smart Environments. Springer, Cham. https://doi.org/10.1007/978-3-319-60164-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60164-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60163-2

  • Online ISBN: 978-3-319-60164-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics