Skip to main content

Ecological Organization of the Sea

  • Chapter
  • First Online:
Handbook on Marine Environment Protection

Abstract

Two thirds of the Earth’s surface area are covered by the oceans and shelf seas and at first sight this vast marine living space appears ecologically homogenous compared to land. A closer look, however, reveals that the global ocean accommodates very different structurally and functionally complex communities that are formed by a great diversity of plant and animal species. All communities or ecosystems (the term is interchangeably used in the following chapter) are interconnected and depend upon each other. All of them have been providing a wealth of ecosystem goods and services that humans have been depending on and economically benefiting from. The following chapter aims at giving a general overview of the ecological organization of the global ocean, which is needed to understand and evaluate past and current impacts of human activities on marine communities. On the most general level, this chapter divides the marine living space and its inhabitants into the pelagic and the benthic zone. It introduces functionally important and widely distributed communities in both zones and highlights the dynamic biological, physical, and chemical processes or mechanisms that play an important role in the maintenance and functioning of these communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Able KW, Fahay MP (1998) The first year in the life of estuarine fishes in the Middle Atlantic Bight. Rutgers University Press, New Brunswick, NJ

    Google Scholar 

  • Airoldi L, Beck MW (2007) Loss, status and trends for coastal marine habitats of Europe. In: Gibson RN, Atkinson RJA, Gordon JDM (eds) Oceanography and marine biology, vol 45. Oceanography and marine biology, CRC Press, pp 345–405

    Google Scholar 

  • Anderson DM, Burkholder JM, Cochlan WP, Glibert PM, Gobler CJ, Heil CA, Kudela RM, Parsons ML, Rensel JEJ, Townsend DW, Trainer VL, Vargo GA (2008) Harmful algal blooms and eutrophication: examining linkages from selected coastal regions of the United States. Harmful Algae 8(1):39–53. doi:10.1016/j.hal.2008.08.017

    Article  CAS  Google Scholar 

  • Ballard RD (1977) Notes on a major oceanographic findings. The discovery of hydrothermal vents. Oceanus 20

    Google Scholar 

  • Beaufort L, Probert I, de Garidel-Thoron T, Bendif EM, Ruiz-Pino D, Metzl N, Goyet C, Buchet N, Coupel P, Grelaud M, Rost B, Rickaby REM, de Vargas C (2011) Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 476(7358):80–83

    Article  CAS  Google Scholar 

  • Beck MW, Heck KL, Able KW, Childers DL, Eggleston DB, Gillanders BM, Halpern B, Hays CG, Hoshino K, Minello TJ, Orth RJ, Sheridan PF, Weinstein MR (2001) The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51(8):633–641. doi:10.1641/0006-3568(2001)051[0633:ticamo]2.0.co;2

    Article  Google Scholar 

  • Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444(7120):752–755. http://www.nature.com/nature/journal/v444/n7120/suppinfo/nature05317_S1.html

    Article  CAS  Google Scholar 

  • Bertness MD, Bruno JF, Silliman BR, Stachowiz JJ (2014) Marine community ecology and conservation. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Block BA, Jonsen ID, Jorgensen SJ, Winship AJ, Shaffer SA, Bograd SJ, Hazen EL, Foley DG, Breed GA, Harrison AL, Ganong JE, Swithenbank A, Castleton M, Dewar H, Mate BR, Shillinger GL, Schaefer KM, Benson SR, Weise MJ, Henry RW, Costa DP (2011) Tracking apex marine predator movements in a dynamic ocean. Nature 475(7354):86–90. doi:10.1038/nature10082

  • Boyce DG, Worm B (2015) Patterns and ecological implications of historical marine phytoplankton change. Mar Ecol Prog Ser 534:251–272. doi:10.3354/meps11411

    Article  Google Scholar 

  • Boyce DG, Frank KT, Leggett WC (2015) From mice to elephants: overturning the ‘one size fits all’ paradigm in marine plankton food chains. Ecol Lett 18(6):504–515. doi:10.1111/ele.12434

    Article  Google Scholar 

  • de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res Oceans 109(C12). doi:10.1029/2004JC002378

  • Broecker WS, Clark E (2009) Ratio of coccolith CaCO3 to foraminifera CaCO3 in late Holocene deep sea sediments. Paleoceanography 24(3). doi:10.1029/2009PA001731

  • Broecker WS, Peng HT (1982) Tracers in the Sea Eldigio Press. Palisades, New York

    Google Scholar 

  • Bruno J, Bertness MD (2001) Positive interactions, facilitations and foundation species. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Chassot E, Bonhommeau S, Dulvy NK, Mélin F, Watson R, Gascuel D, Le Pape O (2010) Global marine primary production constrains fisheries catches. Ecol Lett 13(4):495–505. doi:10.1111/j.1461-0248.2010.01443.x

    Article  Google Scholar 

  • Christie H, Norderhaug KM, Fredriksen S (2009) Macrophytes as habitat for fauna. Mar Ecol Prog Ser 396:221–233. doi:10.3354/meps08351

    Article  Google Scholar 

  • Colman J (1940) On the faunas inhabiting intertidal seaweeds. J Mar Biol Assoc U K 24(01):129–183. doi:10.1017/S0025315400054503

    Article  Google Scholar 

  • Costanza R, dArge R, deGroot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, Oneill RV, Paruelo J, Raskin RG, Sutton P, vandenBelt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387(6630):253–260. doi:10.1038/387253a0

    Article  CAS  Google Scholar 

  • Cressey D (2016) Coral crisis: great barrier reef bleaching is “the worst we’ve ever seen”. Nat News. doi:10.1038/nature.2016.19747

  • Day JW, Hall CAS, Kemp WM, Yanez-Arancibia A (1989) Estuarine ecology. John Wiley & Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore

    Google Scholar 

  • Dayton PK (1985) Ecology of kelp communities. Annu Rev Ecol Syst 16:215–245. doi:10.1146/annurev.es.16.110185.001243

    Article  Google Scholar 

  • Duarte CM, Chiscano CL (1999) Seagrass biomass and production: a reassessment. Aquat Bot 65(1–4):159–174. doi:10.1016/s0304-3770(99)00038-8

    Article  Google Scholar 

  • Ducklow HW, Steinberg DK, Buesseler KO (2001) Upper ocean carbon export and the biological pump. Oceanography 14(4):50–58

    Article  Google Scholar 

  • Edwards KF, Litchmann E (2014) Phytoplankton communities. In: Bertness MD, Bruno JF, Silliman BR, Stachowicz JJ (eds) Marine community ecology and conservation. Sinauer Associates, Inc., Sunderland, MA, pp 365–382

    Google Scholar 

  • Edwards KF, Thomas MK, Klausmeier CA, Litchman E (2012) Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton. Limnol Oceanogr 57(2):554–566. doi:10.4319/lo.2012.57.2.0554

    Article  Google Scholar 

  • Eriksson BK, Ljunggren L, Sandstrom A, Johansson G, Mattila J, Rubach A, Raberg S, Snickars M (2009) Declines in predatory fish promote bloom-forming macroalgae. Ecol Appl 19(8):1975–1988. doi:10.1890/08-0964.1

    Article  Google Scholar 

  • Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281(5374):200–206. doi:10.1126/science.281.5374.200

    Article  CAS  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281(5374):237–240. doi:10.1126/science.281.5374.237

    Article  CAS  Google Scholar 

  • Fisher JAD, Frank KT (2014) Pelagic communities. In: Bertness MD, Bruno JF, Silliman BR, Stacowicz JJ (eds) Marine community ecology and conservation. Sinauer Associates, Inc., Sunderland, MA, pp 337–363

    Google Scholar 

  • Fonseca MS, Cahalan JA (1992) A preliminary evaluation of wave attenuation by 4 species of seagrass. Estuar Coast Shelf Sci 35(6):565–576. doi:10.1016/s0272-7714(05)80039-3

    Article  Google Scholar 

  • Gage JD, Tyler PA (1991) Deep-sea biology: a natural history of organisms at the deep-sea floor, Cambridge University Press, Cambridge. doi:10.1017/S0025315400053339

  • Graham MH (2004) Effects of local deforestation on the diversity and structure of Southern California giant kelp forest food webs. Ecosystems 7(4):341–357. doi:10.1007/s10021-003-0245-6

    Article  Google Scholar 

  • Gruber N, Sarmiento JL (1997) Global patterns of marine nitrogen fixation and denitrification. Glob Biogeochem Cycles 11:235–266

    Article  CAS  Google Scholar 

  • Harrold C, Light K, Lisin S (1998) Organic enrichment of submarine-canyon and continental-shelf benthic communities by macroalgal drift imported from nearshore kelp forests. Limnol Oceanogr 43(4):669–678

    Article  Google Scholar 

  • Hatcher BG (1988) Coral reef primary productivity – a beggar’s banquet. Trends Ecol Evol 3(5):106–111. doi:10.1016/0169-5347(88)90117-6

    Article  CAS  Google Scholar 

  • Hays GC (2003) A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia 503(1):163–170. doi:10.1023/B:HYDR.0000008476.23617.b0

    Article  Google Scholar 

  • Heck KL, Wetstone GS (1977) Habitat complexity and invertebrate species richness and abundance in tropical Seagrass meadows. J Biogeogr 4(2):135–142. doi:10.2307/3038158

    Article  Google Scholar 

  • Herring P (2002) The Biology of the Deep Ocean. Oxford University Press, New York

    Google Scholar 

  • Hildrew AG, Rafaelli DG, Edmonds-Brown R (2007) Body size: the structure and function of aquatic ecosystems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world's coral reefs. Mar Freshw Res 50(8):839–866. doi:10.1071/mf99078

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318(5857):1737–1742. doi:10.1126/science.1152509

    Article  CAS  Google Scholar 

  • Hofmann M, Worm B, Rahmstorf S, Schellnhuber HJ (2011) Declining ocean chlorophyll under unabated anthropogenic CO2 emissions. Environ Res Lett 6:1–8

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301(5635):929–933. doi:10.1126/science.1085046

    Article  CAS  Google Scholar 

  • Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25(11):633–642. doi:10.1016/j.tree.2010.07.011

    Article  Google Scholar 

  • Hunter JR, Alheit J (1995) International GLOBEC small pelagic fishes and climate change program. GLOBEC report no. 8:72p

    Google Scholar 

  • Irigoien X, Klevjer TA, Røstad A, Martinez U, Boyra G, Acuna JL, Bode A, Echevarria F, Gonzalez-Gordillo JI, Hernandez-Leon S, Agusti S, Aksnes DL, Duarte CM, Kaartvedt S (2014) Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat Commun 5:3271

    Article  Google Scholar 

  • Jackson JB, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293(5530):629–637

    Article  CAS  Google Scholar 

  • Kaiser MJ, Attrill MJ, Jennings S, Thomas DN, Barnes AKA, Brierley DKA, Hiddink JG, Kaartokallio H, Polunin NVC, Raffaelli DG (2011) Marine ecology: processes, systems, impacts, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Les DH, Cleland MA, Waycott M (1997) Phylogenetic studies in alismatidae. II: Evolution of marine angiosperms (seagrasses) and hydrophily. Syst Bot 22(3):443–463. doi:10.2307/2419820

    Article  Google Scholar 

  • Litchman E (2007) Resource competition and the ecological success of phytoplankton. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the sea. Elsevier, Boston, MA, pp 351–375

    Chapter  Google Scholar 

  • Longhurst A (1998) Ecological geography of the sea. Academic, San Diego, CA

    Google Scholar 

  • Lüning K (1985) Meeresbotanik. Thieme, Stuttgart

    Google Scholar 

  • Mann K (2000) Ecology of coastal waters with implications for management, 2nd edn. Blackwell Science, Malden, MA

    Google Scholar 

  • Martins GM, Hawkins SJ, Thompson RC, Jenkins SR (2007) Community structure and functioning in intertidal rock pools: effects of pool size and shore height at different successional stages. Mar Ecol Prog Ser 329:43–55. doi:10.3354/meps329043

    Article  Google Scholar 

  • Metaxas A, Scheibling RE (1993) Community structure and organization of tidepools. Mar Ecol Prog Ser 98(1–2):187–198. doi:10.3354/meps098187

    Article  Google Scholar 

  • Muus BJ, Nielsen JG (1999) Die Meeresfische Europas. Kosmos Verlag, Stuttgart

    Google Scholar 

  • Nelson DM, Treguer P, Brzezinski MA, Leynaert A, Queguiner B (1995) Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob Biogeochem Cycles 9(3):359–372. doi:10.1029/95gb01070

    Article  CAS  Google Scholar 

  • Norderhaug KN, Christie H, Fossa JH, Fredriksen S (2005) Fish-macrofauna interactions in a kelp (Laminaria hyperborea) forest. J Mar Biol Assoc U K 85(5):1279–1286. doi:10.1017/s0025315405012439

    Article  Google Scholar 

  • Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems. Bioscience 56(12):987–996. doi:10.1641/0006-3568(2006)56[987:agcfse]2.0.co;2

    Article  Google Scholar 

  • Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic procaryote of global significance. Microbiol Mol Biol Rev 63:106–127

    CAS  Google Scholar 

  • Pearre S (2003) Eat and run? The hunger/satiation hypothesis in vertical migration: history, evidence and consequences. Biol Rev 78(1):1–79. doi:10.1017/s146479310200595x

    Article  Google Scholar 

  • Polovina JJ, Woodworth PA (2012) Declines in phytoplankton cell size in the subtropical oceans estimated from satellite remotely-sensed temperature and chlorophyll, 1998–2007. Deep-Sea Res Part II Top Stud Oceanogr 77–80:82–88. doi:10.1016/j.dsr2.2012.04.006

    Article  Google Scholar 

  • Polovina JJ, Howell EA, Abecassis M (2008) Ocean’s least productive waters are expanding. Geophys Res Lett 35:L03618. doi:10.1029/2007GL031745

    Article  Google Scholar 

  • Pomeroy LR (1974) The oceans food-web, a changing paradigm. Bioscience 24:499–504

    Article  Google Scholar 

  • Pomeroy LR, PJl W, Azam F, Hobbie JE (2007) The microbial loop. Oceanography 20(2):28–33. doi:10.5670/oceanog.2007.45

    Article  Google Scholar 

  • Purcell EM (1977) Life at low Reynold numbers. Am J Phys 45:3–11

    Article  Google Scholar 

  • Ramus J (1992) Productivity of seaweeds. In: Falkowski PG, Woodhead AD, Vivirito K (eds) Primary productivity and biogeochemical cycles in the sea. Springer US, Boston, MA, pp 239–255. doi:10.1007/978-1-4899-0762-2_13

    Chapter  Google Scholar 

  • Raven JA (1998) The twelth Transley lecture. Small is beautiful: the picophytoplankton. Funct Ecol 12:503–513

    Article  Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46(46):205–221

    CAS  Google Scholar 

  • Reusch TBH, Ehlers A, Hammerli A, Worm B (2005) Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc Natl Acad Sci U S A 102(8):2826–2831. doi:10.1073/pnas.0500008102

    Article  CAS  Google Scholar 

  • Richardson AJ, Bakun A, Hays GC, Gibbons MJ (2009) The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends Ecol Evol 24(6):312–322. doi:10.1016/j.tree.2009.01.010

    Article  Google Scholar 

  • Robertson AI, Duke NC (1987) Mangroves as nursery sites – comparisons of the abundance and species composition of fish and crustaceans in mangroves and other nearshore habitats in tropical Australia. Mar Biol 96(2):193–205. doi:10.1007/bf00427019

    Article  Google Scholar 

  • Roman J, Estes JA, Morissette L, Smith C, Costa D, McCarthy J, Nation JB, Nicol S, Pershing A, Smetacek V (2014) Whales as marine ecosystem engineers. Front Ecol Environ 12(7):377–385. doi:10.1890/130220

    Article  Google Scholar 

  • Rönnbäck P, Kautsky N, Pihl L, Troell M, Soerqvist T, Wennhage H (2007) Ecosystem goods and services from Swedish coastal habitats: identification, valuation, and implications of ecosystem shifts. Ambio 36(7):534–544. doi:10.1579/0044-7447(2007)36[534:egasfs]2.0.co;2

    Article  Google Scholar 

  • Ryther JH (1969) Photosynthesis and fish production in the sea. Science 166(3901):72–76. doi:10.1126/science.166.3901.72

    Article  CAS  Google Scholar 

  • Sale PF (2008) Management of coral reefs: where we have gone wrong and what we can do about it. Mar Pollut Bull 56(5):805–809. doi:10.1016/j.marpolbul.2008.04.009

    Article  CAS  Google Scholar 

  • Salvanes AGV, Kristoffersen JB (2001) Mesopelagic fishes. In: Steele J (ed) Encyclopedia of ocean sciences. Academic, Oxford, pp 1711–1717. doi:10.1006/rwos.2001.0012

    Chapter  Google Scholar 

  • Sanders R, Henson SA, Koski M, De La Rocha CL, Painter SC, Poulton AJ, Riley J, Salihoglu B, Visser A, Yool A, Bellerby R, Martin AP (2014) The biological carbon pump in the North Atlantic. Prog Oceanogr 129(part B):200–218. doi:10.1016/j.pocean.2014.05.005

    Article  Google Scholar 

  • Sandin SA, Smith JE, DeMartini EE, Dinsdale EA, Donner SD, Friedlander AM, Konotchick T, Malay M, Maragos JE, Obura D, Pantos O, Paulay G, Richie M, Rohwer F, Schroeder RE, Walsh S, Jackson JBC, Knowlton N, Sala E (2008) Baselines and degradation of coral reefs in the northern Line Islands. PLoS One 3(2):e1548. doi:10.1371/journal.pone.0001548

    Article  Google Scholar 

  • Sarmiento JL, Gruber N (2006) Ocean biogeochemical dynamics. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Smetacek V (1999) Diatoms and the ocean carbon cycle. Protist 150:25–32

    Article  CAS  Google Scholar 

  • Smith CR, Demopoulos AWJ (2003) Ecology of the deep Pacific Ocean floor. In: Tyler PA (ed) Ecosystems of the deep oceans. Elsevier, Amsterdam

    Google Scholar 

  • Smith CR, Drazen J, Mincks SL (2006) Deep-sea biodiversity and biogeography: perspectives from the abyss. Paper presented at the international seabed authority seamounts workshop

    Google Scholar 

  • Smith CR, Levin LA, Koslow JA, Tyler PA, Glover AG (2008) The near future of the deep seafloor ecosystems. In: Polunin N (ed) Aquatic ecosystems : trends and global prospects. Cambridge University Press, Cambridge, UK; New York, pp 334–349

    Chapter  Google Scholar 

  • Sommer U (1998) Biologische Meereskunde. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Sommer U, Stibor H, Katechakis A, Sommer F, Hansen T (2002) Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: primary production. Hydrobiologia 484(1–3):11–20. doi:10.1023/a:1021340601986

    Article  Google Scholar 

  • Steneck RS, Leland A, McNaught DC, Vavrinec J (2013) Ecosystem flips, locks, and feedbacks: the lasting effects of fisheries on Maine’s kelp forest ecosystem. Bull Mar Sci 89(1):31–55. doi:10.5343/bms.2011.1148

    Article  Google Scholar 

  • Stibor H, Vadstein O, Diehl S, Gelzleichter A, Hansen T, Hantzsche F, Katechakis A, Lippert B, Løseth K, Peters C, Roederer W, Sandow M, Sundt-Hansen L, Olsen Y (2004) Copepods act as a switch between alternative trophic cascades in marine pelagic food webs. Ecol Lett 7(4):321–328. doi:10.1111/j.1461-0248.2004.00580.x

    Article  Google Scholar 

  • Stoecker DK (1999) Mixotrophy among dinoflagellates. J Eukaryot Microbiol 46(4):397–401. doi:10.1111/j.1550-7408.1999.tb04619.x

    Article  Google Scholar 

  • Tardent P (1993) Meeresbiologie – Eine Einführung. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • UNEP – United Nations Environment Program (2006) Marine and coastal ecosystems and human well-being: a synthesis report based on the findings of the Millennium Ecosystem Assessment

    Google Scholar 

  • Valiela I, Bowen JL, York JK (2001) Mangrove forests: one of the world’s threatened major tropical environments. Bioscience 51(10):807–815. doi:10.1641/0006-3568(2001)051[0807:mfootw]2.0.co;2

    Article  Google Scholar 

  • Van Dover C (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Volk T, Hoffert MI (1985) Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations archean to present. American Geophysical Union, Washington, DC, pp 99–110. doi:10.1029/GM032p0099

    Google Scholar 

  • Ware DM, Thomson RE (2005) Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific. Science 308(5726):1280–1284. doi:10.1126/science.1109049

    Article  CAS  Google Scholar 

  • Wernberg T, Russell BD, Thomsen MS, Gurgel CFD, Bradshaw CJA, Poloczanska ES, Connell SD (2011) Seaweed communities in retreat from ocean warming. Curr Biol 21(21):1828–1832. doi:10.1016/j.cub.2011.09.028

    Article  CAS  Google Scholar 

  • Werner FJ, Graiff A, Matthiessen B (2016) Even moderate nutrient enrichment negatively adds up to global climate change effects on a habitat-forming seaweed system. Limnol Oceanogr. doi:10.1002/lno.10342

  • Yamaguchi A, Watanabe Y, Ishida H, Harimoto T, Furusawa K, Suzuki S, Ishizaka J, Ikeda T, Takahashi MM (2002) Community and trophic structures of pelagic copepods down to greater depths in the western subarctic Pacific (WEST-COSMIC). Deep-Sea Res I Oceanogr Res Pap 49(6):1007–1025. doi:10.1016/S0967-0637(02)00008-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birte Matthiessen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Matthiessen, B., Werner, F.J., Paulsen, M. (2018). Ecological Organization of the Sea. In: Salomon, M., Markus, T. (eds) Handbook on Marine Environment Protection . Springer, Cham. https://doi.org/10.1007/978-3-319-60156-4_2

Download citation

Publish with us

Policies and ethics