Skip to main content

Marine Climate Engineering

  • Chapter
  • First Online:

Abstract

As a means of countering climate change, some scientists have proposed that climate engineering, which is a deliberate action designed to alter the Earth’s climate, could be done. In this chapter an overview is given of the proposed climate engineering methods that involve the direct manipulation of marine systems. This includes methods that enhance the ocean’s natural physical, chemical, and biological CO2 sequestration pathways, as well as purely technical ones that either use the ocean as a carbon storage reservoir or alter it’s properties to affect the Earth’s radiation budget. Few methods have been thoroughly evaluated and there are still many unknowns, at both the level of basic understanding and as to whether or not it would even be technologically feasible to implement any of them. Research so far has shown that some CE methods do have the potential to alter certain aspects of the climate system. Some have more potential than others and most of them appear to have significant side effects.

This is a preview of subscription content, log in via an institution.

References

  • Aumont O, Bopp L (2006) Globalizing results from ocean in situ iron fertilization studies. Glob Biogeochem Cycles 20:GB2017. doi:10.1029/2005gb002591

    Article  Google Scholar 

  • Aziz A, Hailes HC, Ward JM, Evans JRG (2014) Long-term stabilization of reflective foams in sea water. RSC Adv 4:53028–53036. doi:10.1039/C4RA08714C

    Article  CAS  Google Scholar 

  • Bala G, Caldeira K, Nemani R et al (2011) Albedo enhancement of marine clouds to counteract global warming: impacts on the hydrological cycle. Clim Dyn 37:915–931. doi:10.1007/s00382-010-0868-1

    Article  Google Scholar 

  • Bauer JE, Cai W-J, Raymond PA et al (2013) The changing carbon cycle of the coastal ocean. Nature 504:61–70. doi:10.1038/nature12857

    Article  CAS  Google Scholar 

  • Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20:264–271. doi:10.1016/j.copbio.2009.06.002

    Article  CAS  Google Scholar 

  • Boyd PW, Jickells T, Law CS et al (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315:612–617. doi:10.1126/science.1131669

    Article  CAS  Google Scholar 

  • Burdige DJ (2005) Burial of terrestrial organic matter in marine sediments: a re-assessment. Global Biogeochem Cycles 19:1–7. doi:10.1029/2004GB002368

    Article  Google Scholar 

  • Caldeira K, Rau GH (2000) Accelerating carbonate dissolution to sequester carbon dioxide in the ocean: geochemical implications. Geophys Res Lett 27:225–228

    Article  CAS  Google Scholar 

  • Cripps G, Widdicombe S, Spicer JI, Findlay HS (2013) Biological impacts of enhanced alkalinity in Carcinus maenas. Mar Pollut Bull 71:190–198. doi:10.1016/j.marpolbul.2013.03.015

    Article  CAS  Google Scholar 

  • Cvijanovic I, Caldeira K, MacMartin DG (2015) Impacts of ocean albedo alteration on Arctic sea ice restoration and Northern Hemisphere climate. Environ Res Lett 10:044020. doi:10.1088/1748-9326/10/4/044020

    Article  Google Scholar 

  • Duarte CM, Losada IJ, Hendriks IE et al (2013) The role of coastal plant communities for climate change mitigation and adaptation. Nat Clim Chang 3:961–968. doi:10.1038/nclimate1970

    Article  CAS  Google Scholar 

  • Eisaman MD, Parajuly K, Tuganov A et al (2012) CO2 extraction from seawater using bipolar membrane electrodialysis. Energy Environ Sci 5:7346. doi:10.1039/c2ee03393c

    Article  CAS  Google Scholar 

  • Ekau W, Auel H, Pörtner H-O, Gilbert D (2010) Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7:1669–1699

    Article  CAS  Google Scholar 

  • Evans J, Stride E, Edirisinghe M et al (2010) Can oceanic foams limit global warming? Clim Res 42:155–160. doi:10.3354/cr00885

    Article  Google Scholar 

  • Flynn KJ, Mitra A, Greenwell HC, Sui J (2013) Monster potential meets potential monster: pros and cons of deploying genetically modified microalgae for biofuels production. Interface Focus 3:20120037. doi:10.1098/rsfs.2012.0037

    Article  CAS  Google Scholar 

  • Friedlingstein P, Andrew RM, Rogelj J et al (2014) Persistent growth of CO2 emissions and implications for reaching climate targets. Nat Geosci 7:709–715. doi:10.1038/ngeo2248

    Article  CAS  Google Scholar 

  • Gnanadesikan A, Sarmiento JL, Slater RD (2003) Effects of patchy ocean fertilization on atmospheric carbon dioxide and biological production. Glob Biogeochem Cycles 17:1050. doi:10.1029/2002gb001940

    Article  Google Scholar 

  • Gruber N (2011) Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philos Trans A Math Phys Eng Sci 369:1980–1996. doi:10.1098/rsta.2011.0003

    Article  CAS  Google Scholar 

  • Hangx SJT, Spiers CJ (2009) Coastal spreading of olivine to control atmospheric CO2 concentrations: a critical analysis of viability. Int J Greenhouse Gas Control 3:757–767. doi:10.1016/j.ijggc.2009.07.001

    Article  CAS  Google Scholar 

  • Hartmann J, West AJ, Renforth P (2013) Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutirents, and mitigate ocean acidification. Rev Geophys 51:113–149. doi:10.1002/rog.20004.1.Institute

    Article  Google Scholar 

  • Harvey LDD (2008) Mitigating the atmospheric CO2 increase and ocean acidification by adding limestone powder to upwelling regions. J Geophys Res Ocean 113. doi:10.1029/2007jc004373

  • Heinze C, Meyer S, Goris N et al (2015) The ocean carbon sink – impacts, vulnerabilities and challenges. Earth Syst Dynam 6:327–358. doi:10.5194/esd-6-327-2015

    Article  Google Scholar 

  • Ilyina T, Wolf-Gladrow D, Munhoven G, Heinze C (2013a) Assessing the potential of calcium-based artificial ocean alkalinization to mitigate rising atmospheric CO2 and ocean acidification. Geophys Res Lett 40:5909–5914. doi:10.1002/2013GL057981

    Article  CAS  Google Scholar 

  • Ilyina T, Wolf-Gladrow D, Munhoven G, Heinze C (2013b) Assessing the potential of calcium-based artificial ocean alkalinization to mitigate rising atmospheric CO2 and ocean acidification. Geophys Res Lett. doi:10.1002/2013GL057981

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. In: Field CB, Barros VR, Dokken DJ, Mach KJ (eds) Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change

    Google Scholar 

  • Karl D, Letelier R (2008) Nitrogen fixation-enhanced carbon sequestration in low nitrate, low chlorophyll seascapes. Mar Ecol Prog Ser 364:257–268. doi:10.3354/meps07547

    Article  CAS  Google Scholar 

  • Keller DP, Feng EY, Oschlies A (2014) Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario. Nat Commun 5:1–11. doi:10.1038/ncomms4304

    Google Scholar 

  • Kheshgi HS (1995) Sequestering atmospheric carbon dioxide by increasing ocean alkalinity. Energy 20:915–922. doi:10.1016/0360-5442(95)00035-F

    Article  CAS  Google Scholar 

  • Köhler P, Abrams JF, Völker C et al (2013) Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology. Environ Res Lett 8:14009

    Article  Google Scholar 

  • Köhler P, Hartmann J, Wolf-Gladrow DA (2010) Geoengineering potential of artificially enhanced silicate weathering of olivine. Proc Natl Acad Sci U S A 107:20228–20233. doi:10.1073/pnas.1000545107

    Article  Google Scholar 

  • Kwiatkowski L, Ricke KL, Caldeira K (2015) Atmospheric consequences of disruption of the ocean thermocline. Environ Res Lett 10:034016. doi:10.1088/1748-9326/10/3/034016

    Article  Google Scholar 

  • Lackner KS, Brennan S, Matter JM et al (2012) The urgency of the development of CO2 capture from ambient air. Proc Natl Acad Sci U S A 109:13156–13162. doi:10.1073/pnas.1108765109

    Article  CAS  Google Scholar 

  • Lampitt R, Achterberg E, Anderson T et al (2008) Ocean fertilization: a potential means of geoengineering? Philos Trans R Soc A Math Phys Eng Sci 366:3919–3945. doi:10.1098/rsta.2008.0139

    Article  CAS  Google Scholar 

  • Latham J (2002) Amelioration of global warming by controlled enhancement of the albedo and longevity of low-level maritime clouds. Atmos Sci Lett 3:52–58. doi:10.1006/asle.2002.0048

    Article  Google Scholar 

  • Lawrence MW (2014) Efficiency of carbon sequestration by added reactive nitrogen in ocean fertilisation. Int J Glob Warming 6:15–33

    Article  Google Scholar 

  • Lovelock JF, Rapley CG (2007) Ocean pipes could help the Earth to cure itself. Nature 449:403. doi:10.1038/449403a

    Article  CAS  Google Scholar 

  • Marchetti C (1977) On geoengineering and the CO2 problem. Clim Chang 1:59–88

    Article  CAS  Google Scholar 

  • Marion GM, Millero FJ, Feistel R (2009) Precipitation of solid phase calcium carbonates and their effect on application of seawater SA-T-P models. Ocean Sci 5:285–291. doi:10.5194/os-5-285-2009

    Article  CAS  Google Scholar 

  • Martin JH (1990) Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5:1–13. doi:10.1029/PA005i001p00001

    Article  Google Scholar 

  • Maruyama S, Yabuki T, Sato T et al (2011) Evidences of increasing primary production in the ocean by Stommel’s perpetual salt fountain. Deep Res Part I Oceanogr Res Pap 58:567–574. doi:10.1016/j.dsr.2011.02.012

    Article  CAS  Google Scholar 

  • Matear RJ, Elliot B (2004) Enhancement of oceanic uptake of anthropogenic CO2 by macronutrient fertilization. J Geophys Res 109:C04001. doi:10.1029/2000JC000321

    Article  Google Scholar 

  • Mengis N, Martin T, Keller DP, Oschlies A (2016) Assessing climate impacts and risks of ocean albedo modification in the Arctic. J Geophys Res Ocean:8271–8295. doi:10.1002/2015JC011433

  • Ming T, de Richter R, Liu W, Caillol S (2014) Fighting global warming by climate engineering: is the Earth radiation management and the solar radiation management any option for fighting climate change? Renew Sust Energ Rev 31:792–834. doi:10.1016/j.rser.2013.12.032

    Article  Google Scholar 

  • N‘Yeurt ADR, Chynoweth DP, Capron ME et al (2012) Negative carbon via ocean afforestation. Process Saf Environ Prot 90:467–474. doi:10.1016/j.psep.2012.10.008

    Article  Google Scholar 

  • National Reseach Council (2015) Climate intervention: carbon dioxide removal and reliable sequestration. The National Academies Press, Washington, DC

    Google Scholar 

  • Orr JC (2004) Modelling the ocean storage of CO2 – the GOSAC study. Report

    Google Scholar 

  • Oschlies A, Koeve W, Rickels W, Rehdanz K (2010) Side effects and accounting aspects of hypothetical large-scale Southern Ocean iron fertilization. Biogeosciences 7:4017–4035

    Article  CAS  Google Scholar 

  • Partanen AI, Kokkola H, Romakkaniemi S et al (2012) Direct and indirect effects of sea spray geoengineering and the role of injected particle size. J Geophys Res Atmos 117:1–16. doi:10.1029/2011JD016428

    Article  Google Scholar 

  • Rau GH (2014) Enhancing the ocean’s role in CO2 mitigation. In: Global environmental change. Springer Netherlands, Dordrecht, pp 817–824

    Google Scholar 

  • Rau GH (2008) Electrochemical splitting of calcium carbonate to increase solution alkalinity: implications for mitigation of carbon dioxide and ocean acidity. Environ Sci Technol 42:8935–8940. doi:10.1021/es800366q

    Article  CAS  Google Scholar 

  • Rau GH, Carroll SA, Bourcier WL et al (2013) Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production. Proc Natl Acad Sci U S A 110:10095–10100. doi:10.1073/pnas.1222358110

    Article  CAS  Google Scholar 

  • Renforth P, Jenkins BG, Kruger T (2013) Engineering challenges of ocean liming. Energy 60:442–452. doi:10.1016/j.energy.2013.08.006

    Article  CAS  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43. doi:10.1007/s12155-008-9008-8

    Article  Google Scholar 

  • Seitz R (2011) Bright water: hydrosols, water conservation and climate change. Clim Chang 105:365–381. doi:10.1007/s10584-010-9965-8

    Article  Google Scholar 

  • Smetacek V, Klaas C, Strass VH et al (2012) Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487:313–319. http://www.nature.com/nature/journal/v487/n7407/abs/nature11229.html#supplementary-information

    Article  CAS  Google Scholar 

  • Strand SE, Benford G (2009) Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments. Environ Sci Technol 43:1000–1007. doi:10.1021/es8015556

    Article  CAS  Google Scholar 

  • Tollefson J (2012) Ocean-fertilization project off Canada sparks furore. Nature 490:458–459. doi:10.1038/490458a

    Article  CAS  Google Scholar 

  • Walter AGN (2011) Controlling the Earth’s albedo using reflective hollow glass spheres. Int J Glob Environ Issues 11:91. doi:10.1504/IJGENVI.2011.043508

    Article  Google Scholar 

  • White A, Björkman K, Grabowski E et al (2010) An open ocean trial of controlled upwelling using wave pump technology. J Atmos Ocean Technol 27:385–396. doi:10.1175/2009JTECHO679.1

    Article  Google Scholar 

  • Zamora LM, Oschlies A, Bange HW et al (2012) Nitrous oxide dynamics in low oxygen regions of the Pacific: insights from the MEMENTO database. Biogeosciences 9:5007–5022. doi:10.5194/bg-9-5007-2012

    Article  CAS  Google Scholar 

  • Zhou S, Flynn P (2005) Geoengineering downwelling ocean currents: a cost assessment. Clim Chang 71:203–220

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Keller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Keller, D.P. (2018). Marine Climate Engineering. In: Salomon, M., Markus, T. (eds) Handbook on Marine Environment Protection . Springer, Cham. https://doi.org/10.1007/978-3-319-60156-4_13

Download citation

Publish with us

Policies and ethics