Biology and Pathology of Perineuronal Satellite Cells in Sensory Ganglia

  • Ennio Pannese
Part of the Advances in Anatomy, Embryology and Cell Biology book series (ADVSANAT, volume 226)


A cell sheath enveloping the body of the neurons in sensory ganglia was mentioned for the first time in 1836 by Valentin, a pupil of Purkinje. In some illustrations of his paper, the nuclei of cells adjacent to the surface of the nerve cell body, both in the trigeminal ganglion and in the ganglia of the autonomic nervous system, were clearly shown (Fig. 1.1a) even though they were misinterpreted as pigment granules. Since Remak (1838) denied the existence of this perineuronal sheath, Valentin (1839) provided a more detailed description of it, illustrated with new drawings (Fig. 1.1b), the captions of which gave a correct interpretation of the satellite cell nuclei.


  1. Adamo NJ, Daigneault EA (1972) Desmosome-like junctions in the spiral ganglia of cats. Am J Anat 135:141–146PubMedPubMedCentralGoogle Scholar
  2. Adamo NJ, Daigneault EA (1973) Ultrastructural features of neurons and nerve fibres in the spiral ganglia of cats. J Neurocytol 2:91–103PubMedPubMedCentralGoogle Scholar
  3. Adoutte A, Balmefrézol M, Beisson J, André J (1972) The effects of erythromycin and chloramphenicol on the ultrastructure of mitochondria in sensitive and resistant strains of Paramecium. J Cell Biol 54:8–19PubMedPubMedCentralGoogle Scholar
  4. Ahmed MM (1977) Changes in the ultrastructure of satellite cells of slow loris in tricresylphosphate poisoning. Acta Neuropathol 37:173–175PubMedPubMedCentralGoogle Scholar
  5. Ajima H, Kawano Y, Takagi R, Aita M, Gomi H, Byers MR, Maeda T (2001) The exact expression of glial fibrillary acidic protein (GFAP) in trigeminal ganglion and dental pulp. Arch Histol Cytol 64:503–511PubMedPubMedCentralGoogle Scholar
  6. Alvarez MP, Solas MT, Suarez I, Fernandez B (1989) Glial fibrillary acidic protein-like immunoreactivity in cat satellite cells of sympathetic ganglia. Acta Anat 136:9–11PubMedPubMedCentralGoogle Scholar
  7. Andres KH (1961) Untersuchungen über den Feinbau von Spinalganglien. Z Zellforsch 55:1–48PubMedPubMedCentralGoogle Scholar
  8. Andres KH (1963) Elektronenmikroskopische Untersuchungen über Strukturveränderungen im Zytoplasma von Spinalganglienzellen der Ratte nach Bestrahlung mit 185 MeV-Protonen. Z Zellforsch 60:633–658PubMedPubMedCentralGoogle Scholar
  9. Andres KH, Larsson B, Rexed B (1963) Zur Morphogenese der akuten Strahlenschädigung in Rattenspinalganglien nach Bestrahlung mit 185 MeV-Protonen. Z Zellforsch 60:532–559PubMedPubMedCentralGoogle Scholar
  10. Anzil AP, Blinzinger K, Herrlinger H (1976) Fenestrated blood capillaries in rat cranio-spinal sensory ganglia. Cell Tissue Res 167:563–567PubMedPubMedCentralGoogle Scholar
  11. Aoki E, Semba R, Kashiwamata S (1991) Evidence for the presence of L-arginine in the glial components of the peripheral nervous system. Brain Res 559:159–162PubMedPubMedCentralGoogle Scholar
  12. Aoki E, Takeuchi IK, Shoji R, Semba R (1993) Localization of nitric oxide-related substances in the peripheral nervous tissues. Brain Res 620:142–145PubMedPubMedCentralGoogle Scholar
  13. Arnold W (1970) Ungewöhnlich grosse sphärische Lipidkörper im Ependym und Subependym des Feuersalamanders. Z Zellforsch 106:523–538PubMedPubMedCentralGoogle Scholar
  14. Arvidson B (1979) Distribution of intravenously injected protein tracers in peripheral ganglia of adult mice. Exp Neurol 63:388–410PubMedPubMedCentralGoogle Scholar
  15. Averill S, Delcroix J-D, Michael GJ, Tomlinson DR, Fernyhough P, Priestley JV (2001) Nerve growth factor modulates the activation status and fast axonal transport of ERK ½ in adult nociceptive neurones. Mol Cell Neurosci 18:183–196PubMedPubMedCentralGoogle Scholar
  16. Bär K-J, Schurigt U, Scholze A, Segond von Banchet G, Stopfel N, Bräuer R, Halbhuber K-J, Schaible H-G (2004) The expression and localization of somatostatin receptors in dorsal root ganglion neurons of normal and monoarthritic rats. Neuroscience 127:197–206PubMedPubMedCentralGoogle Scholar
  17. Becker C-H (1968) Die Multiplikation des Aujeszkyschen Virus in den Spinalganglien des Kaninchens. Arch Exp Veterinaermed 22:363–381Google Scholar
  18. Belzer V, Shraer N, Hanani M (2010) Phenotypic changes in satellite glial cells in cultured trigeminal ganglia. Neuron Glia Biol 6:237–243PubMedPubMedCentralGoogle Scholar
  19. Bennett G, Hemming R (1989) Ultrastructural localization of CMPase, TPPase, and NADPase activity in neurons, satellite cells, and Schwann cells in frog dorsal root ganglia. J Histochem Cytochem 37:165–172CrossRefGoogle Scholar
  20. Berger UV, Hediger MA (2000) Distribution of the glutamate transporters GLAST and GLT-1 in rat circumventricular organs, meninges, and dorsal root ganglia. J Comp Neurol 421:385–399PubMedPubMedCentralGoogle Scholar
  21. Bernardini N, De Stefano ME, Tata AM, Biagioni S, Augusti-Tocco G (1998) Neuronal and non-neuronal cell populations of the avian dorsal root ganglia express muscarinic acetylcholine receptors. Int J Dev Neurosci 16:365–377PubMedPubMedCentralGoogle Scholar
  22. Bernardini N, Levey AI, Augusti-Tocco G (1999) Rat dorsal root ganglia express m1-m4 muscarinic receptor proteins. J Peripher Nerv Syst 4:222–232PubMedPubMedCentralGoogle Scholar
  23. Bertrand I, Guillain J (1933) La microglie et l’oligodendroglie ganglionnaires. C R Soc Biol 113:382–383Google Scholar
  24. Bidder FH (1847) Zur Lehre von dem Verhältnis der Ganglienkörper zu den Nervenfasern. Neue Beiträge, nebst einem Anlange von A W Volkmann. Breitkopf und Haertel, LeipzigGoogle Scholar
  25. Bombardi C, Grandis A, Nenzi A, Giurisato M, Cozzi B (2010) Immunohistochemical localization of substance P and cholecystochinin in the dorsal root ganglia and spinal cord of the bottlenose dolphin (Tursiops truncatus). Anat Rec 293:477–484Google Scholar
  26. Braun N, Sévigny J, Robson SC, Hammer K, Hanani M, Zimmermann H (2004) Association of the Ecto-ATPase NTPDase2 with glial cells of the peripheral nervous system. Glia 45:124–132PubMedPubMedCentralGoogle Scholar
  27. Brizzee KR (1949) Histogenesis of the supporting tissue in the spinal and the sympathetic trunk ganglia in the chick. J Comp Neurol 91:129–146PubMedPubMedCentralGoogle Scholar
  28. Brown DA, Galvan M (1977) Influence of neuroglial transport on the action of γ-aminobutyric acid on mammalian ganglion cells. Br J Pharmacol 59:373–378PubMedPubMedCentralGoogle Scholar
  29. Buehler A (1897) Untersuchungen über den Bau der Nervenzellen. Verh Phys Ges 31:285–392Google Scholar
  30. Bunge MB, Bunge RP, Peterson ER, Murray MR (1967) Light and electron microscope study of long term organized cultures of rat dorsal root ganglia. J Cell Biol 32:439–466PubMedPubMedCentralGoogle Scholar
  31. Burdyga G, Lal S, Spiller D, Jiang W, Thompson D, Attwood S, Saeed S, Grundy D, Varro A, Dimaline R, Dockray J (2003) Localization of orexin-1 receptors to vagal afferent neurons in the rat and humans. Gastroenterology 124:129–139PubMedPubMedCentralGoogle Scholar
  32. Campana WM, Myers RR (2003) Exogenous erythropoietin protects against dorsal root ganglion apoptosis and pain following peripheral nerve injury. Eur J Neurosci 18:1497–1506PubMedPubMedCentralGoogle Scholar
  33. Carlton SM, Hargett GL (2007) Colocalization of metabotropic glutamate receptors in rat dorsal root ganglion cells. J Comp Neurol 501:780–789PubMedPubMedCentralGoogle Scholar
  34. Carozzi VA, Canta A, Oggioni N, Ceresa C, Marmiroli P, Konvalinka J, Zoia C, Bossi M, Ferrarese C, Tredici G, Cavaletti G (2008) Expression and distribution of ‘high affinity’ glutamate transporters GLT1, GLAST, EAAC1 and of GCPII in the rat peripheral nervous system. J Anat 213:539–546PubMedPubMedCentralGoogle Scholar
  35. Carr VM, Simpson SB Jr (1978) Proliferative and degenerative events in the early development of chick dorsal root ganglia. I. Normal development. J Comp Neurol 182:727–740PubMedPubMedCentralGoogle Scholar
  36. Castillo C, Norcini M, Martin Hernandez LA, Correa G, Blanck TJJ, Recio-Pinto E (2013) Satellite glia cells in dorsal root ganglia express functional NMDA receptors. Neuroscience 240:135–146PubMedPubMedCentralGoogle Scholar
  37. Cecchini T, Ferri P, Ciaroni S, Cuppini R, Ambrogini P, Papa S, Del Grande P (1999) Postnatal proliferation of DRG non-neuronal cells in vitamin E-deficient rats. Anat Rec 256:109–115PubMedPubMedCentralGoogle Scholar
  38. Cece R, Petruccioli MG, Pizzini G, Cavaletti G, Tredici G (1995) Ultrastructural aspects of DRG satellite cell involvement in experimental cisplatin neuronopathy. J Submicrosc Cytol Pathol 27:417–425PubMedPubMedCentralGoogle Scholar
  39. Cervós-Navarro J (1960) Elektronenmikroskopische Untersuchungen an Spinalganglien. II Satellitenzellen. Arch Psychiatr Nervenkrank 200:267–283CrossRefGoogle Scholar
  40. Cervós-Navarro J (1962) Elektronenmikroskopische Befunde an Spinalganglienzellen der Ratte nach Ischiadikotomie. IV. Int Kongr Neuropathol 2:99–104. Thieme, StuttgartGoogle Scholar
  41. Chang LW, Hartmann HA (1972) Ultrastructural studies of the nervous system after mercury intoxication. I. Pathological changes in the nerve cell bodies. Acta Neuropathol 20:122–138PubMedPubMedCentralGoogle Scholar
  42. Chang PL, Taylor JJ, Wozniak W, Young PA (1973) An ultrastructural study of sympathetic ganglion satellite cells in the rat. I. Normal and X-ray irradiated satellite cells. J Neural Transm 34:215–234PubMedPubMedCentralGoogle Scholar
  43. Cherkas PS, Huang T-Y, Pannicke T, Tal M, Reichenbach A, Hanani M (2004) The effects of axotomy on neurons and satellite glial cells in mouse trigeminal ganglion. Pain 110:290–298PubMedPubMedCentralGoogle Scholar
  44. Christie K, Koshy D, Cheng C, Guo G, Martinez JA, Duraikannu A, Zochodne DW (2015) Intraganglionic interactions between satellite cells and adult sensory neurons. Mol Cell Neurosci 67:1–12PubMedPubMedCentralGoogle Scholar
  45. Chudler EH, Anderson LC, Byers MR (1997) Trigeminal ganglion neuronal activity and glial fibrillary acidic protein immunoreactivity after inferior alveolar nerve crush in the adult rat. Pain 73:141–149PubMedPubMedCentralGoogle Scholar
  46. Ciaroni S, Cecchini T, Cuppini R, Ferri P, Ambrogini P, Bruno C, Del Grande P (2000) Are there proliferating neuronal precursors in adult rat dorsal root ganglia? Neurosci Lett 281:69–71PubMedPubMedCentralGoogle Scholar
  47. Citkowitz E, Holtzman E (1973) Peroxisomes in dorsal root ganglia. J Histochem Cytochem 21:34–41PubMedPubMedCentralGoogle Scholar
  48. Coggeshall RE (1967) A light and electron microscope study of the abdominal ganglion of Aplysia californica. J Neurophysiol 30:1263–1287PubMedPubMedCentralGoogle Scholar
  49. Cook ML, Stevens JG (1973) Pathogenesis of herpetic neuritis and ganglionitis in mice: evidence for intra-axonal transport of infection. Infect Immun 7:272–288PubMedPubMedCentralGoogle Scholar
  50. Cooper E (1984) Synapse formation among developing sensory neurones from rat nodose ganglia grown in tissue culture. J Physiol 351:263–274PubMedPubMedCentralGoogle Scholar
  51. Copray JCVM, Mantingh I, Brouwer N, Biber K, Küst BM, Liem RSB, Huitinga I, Tilders FJH, Van Dam A-M, Boddeke HWGM (2001) Expression of interleukin-1 beta in rat dorsal root ganglia. J Neuroimmunol 118:203–211PubMedPubMedCentralGoogle Scholar
  52. Corsetti G, Rodella L, Rezzani R, Stacchiotti A, Bianchi R (2000) Cytoplasmic changes in satellite cells of spinal ganglia induced by cisplatin treatment in rats. Ultrastruct Pathol 24:259–265PubMedPubMedCentralGoogle Scholar
  53. Courvoisier LG (1868) Über die Zellen der Spinalganglien sowie des Sympathicus beim Frosch. Arch Mikr Anat 4:125–145Google Scholar
  54. Cravioto H, Merker HJ (1963) Elektronenmikroskopische Untersuchungen an Satellitenzellen der sympathischen Ganglien des Menschen. Arch Psychiatr Nervenkr 204:1–10Google Scholar
  55. D’Amico-Martel A, Noden DM (1983) Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. Am J Anat 166:445–468PubMedPubMedCentralGoogle Scholar
  56. De Castro F (1921) Estudio sobre los ganglios sensitivos del hombre en estado normal y patológico. Formas celulares típicas y atípicas. Trab Lab Invest Biol Univ Madrid 19:241–340Google Scholar
  57. De Castro F (1932) Sensory ganglia of the cranial and spinal nerves. Normal and pathological. In: Penfield W (ed) Cytology and cellular pathology of the nervous system, vol 1. Hoeber, New York, pp 91–143Google Scholar
  58. De Castro F (1946) Sobre el comportamiento y significacion de la oligodendroglia en la substancia gris central y de los gliocitos en los ganglios nerviosos perifericos. Arch Histol (Buenos Aires) 2:317–343Google Scholar
  59. de Groat WC (1972) GABA-depolarization of a sensory ganglion: antagonism by picrotoxin and bicuculline. Brain Res 38:429–432PubMedPubMedCentralGoogle Scholar
  60. de Groat WC, Lalley PM, Saum WR (1972) Depolarization of dorsal root ganglia in the cat by GABA and related amino acids: antagonism by picrotoxin and bicuculline. Brain Res 44:273–277PubMedPubMedCentralGoogle Scholar
  61. De Koninck P, Carbonetto S, Cooper E (1993) NGF induces neonatal rat sensory neurons to extend dendrites in culture after removal of satellite cells. J Neurosci 13:577–585PubMedPubMedCentralGoogle Scholar
  62. Della Pietra V (1937) Contributo allo studio istologico dei gangli spinali. Riv Neurol 10:588–595Google Scholar
  63. Detwiler SR (1937) Application of vital dyes to the study of sheath cell origin. Proc Soc Exp Biol Med 37:380–382Google Scholar
  64. Devor M, Seltzer Z (1999) Pathophysiology of damaged nerves in relation to chronic pain. In: Wall PD, Melzack R (eds) Textbook of pain, 4th edn. Churcill Livingston, London, pp 129–164Google Scholar
  65. Devor M, Govrin-Lippmann R, Frank I, Raber P (1985) Proliferation of primary sensory neurons in adult rat dorsal root ganglion and the kinetics of retrograde cell loss after sciatic nerve section. Somatosens Res 3:139–167PubMedPubMedCentralGoogle Scholar
  66. Dillard SH, Cheatham WJ, Moses HL (1972) Electron microscopy of zosteriform herpes simplex infection in the mouse. Lab Invest 26:391–402PubMedPubMedCentralGoogle Scholar
  67. Dixon JS (1966) The fine structure of parasympathetic nerve cells in the otic ganglia of the rabbit. Anat Rec 156:239–252Google Scholar
  68. Djukic B, Casper KB, Philpot BD, Chin L-S, McCarthy KD (2007) Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J Neurosci 27:11354–11365PubMedPubMedCentralGoogle Scholar
  69. Dogiel AS (1896) Der Bau der Spinalganglien bei den Säugetieren. Anat Anz 12:140–152Google Scholar
  70. Dogiel AS (1897) Zur Frage über den feineren Bau der Spinalganglien und deren Zellen bei Säugetieren. Int Monatsschr Anat Physiol 14:73–116Google Scholar
  71. Dohrn A (1891) Nervenfaser und Ganglienzelle. Histogenetische Untersuchungen. Mittheil Zool Station Neapel 10:255–341Google Scholar
  72. Donegan M, Kernisant M, Cua C, Jasmin L, Ohara PT (2013) Satellite glial cell proliferation in the trigeminal ganglia after chronic constriction injury of the infraorbital nerve. Glia 61:2000–2008PubMedPubMedCentralGoogle Scholar
  73. Donelli G, D’Uva V, Paoletti L (1975) Ultrastructure of gliosomes in ependymal cells of the lizard. J Ultrastruct Res 50:253–263PubMedPubMedCentralGoogle Scholar
  74. Dublin P, Hanani M (2007) Satellite glial cells in sensory ganglia: their possible contribution to inflammatory pain. Brain Behav Immun 21:592–598PubMedPubMedCentralGoogle Scholar
  75. Dubois-Dalcq M, Menu R, Buyse M (1972) Influence of fatty acids on fine structure of cultured neurons. An experimental approach to Refsum’s disease. J Neuropathol Exp Neurol 31:645–667PubMedPubMedCentralGoogle Scholar
  76. Dubový P, Klusáková I, Svíženská I, Brázda V (2010) Satellite glial cells express IL-6 and corresponding signal-transducing receptors in the dorsal root ganglia of rat neuropathic pain model. Neuron Glia Biol 6:73–83PubMedPubMedCentralGoogle Scholar
  77. Duchen LW, Scaravilli F (1977) Quantitative and electron microscopic studies of sensory ganglion cells of the Sprawling mouse. J Neurocytol 6:465–481PubMedPubMedCentralGoogle Scholar
  78. Eames RA, Gamble HJ (1970) Schwann cell relationships in normal human cutaneous nerves. J Anat 106:417–435PubMedPubMedCentralGoogle Scholar
  79. Ebendal T (1975) Effects of nerve growth factor on the synthesis of nucleic acids and proteins in cultured chick embryo trigeminal ganglia. Zoon 3:159–167Google Scholar
  80. Ehrlich P (1886) Ueber die Methylenblaureaction der lebenden Nervensubstanz. Dtsch Med Wochenschr 12:49–52Google Scholar
  81. Elfvin L-G, Forsman C (1978) The ultrastructure of junctions between satellite cells in mammalian sympathetic ganglia as revealed by freeze-etching. J Ultrastruct Res 63:261–274PubMedPubMedCentralGoogle Scholar
  82. Elfvin L-G, Björklund H, Dahl D, Seiger A (1987) Neurofilament-like and glial fibrillary acidic protein-like immunoreactivities in rat and guinea-pig sympathetic ganglia in situ and after perturbation. Cell Tissue Res 250:79–86PubMedPubMedCentralGoogle Scholar
  83. Elson K, Speck P, Simmons A (2003) Herpes simplex virus infection of murine sensory ganglia induces proliferation of neuronal satellite cells. J Gen Virol 84:1079–1084PubMedPubMedCentralGoogle Scholar
  84. Elson K, Ribeiro RM, Perelson AS, Simmons A, Speck P (2004) The life span of ganglionic glia in murine sensory ganglia estimated by uptake of bromodeoxyuridine. Exp Neurol 186:99–103PubMedPubMedCentralGoogle Scholar
  85. Esiri MM, Reading MC (1989) Macrophages, lymphocytes and major histocompatibility complex (HLA) class II antigens in adult human sensory and sympathetic ganglia. J Neuroimmunol 23:187–193PubMedPubMedCentralGoogle Scholar
  86. Farquhar MG, Hartmann JF (1957) Neuroglial structure and relationships as revealed by electron microscopy. J Neuropathol Exp Neurol 16:18–39PubMedPubMedCentralGoogle Scholar
  87. Feldman-Goriachnik R, Hanani M (2011) Functional study of endothelin B receptors in satellite glial cells in trigeminal ganglia. Neuroreport 22:465–469PubMedPubMedCentralGoogle Scholar
  88. Feltz P, Rasminsky M (1974) A model for the mode of action of GABA on primary afferent terminals: depolarizing effects of GABA applied iontophoretically to neurones of mammalian dorsal root ganglia. Neuropharmacology 13:553–563PubMedPubMedCentralGoogle Scholar
  89. Fenzi F, Benedetti MD, Moretto G, Rizzuto N (2001) Glial cell and macrophage reactions in rat spinal ganglion after peripheral nerve lesions: an immunocytochemical and morphometric study. Arch Ital Biol 139:357–365PubMedPubMedCentralGoogle Scholar
  90. Fieandt H (1910) Eine neue Methode zur Darstellung des Gliagewebes, nebst Beiträgen zur Kenntnis des Baues und der Anordnung der Neuroglia des Hundehirns. Arch Mikr Anat 76:125–209CrossRefGoogle Scholar
  91. Field HJ, Hill TJ (1974) The pathogenesis of pseudorabies in mice following peripheral inoculation. J Gen Virol 23:145–157PubMedPubMedCentralGoogle Scholar
  92. Fildes Brosnan C, Bunge MB, Murray MR (1970) The response of lysosomes in cultured neurons to chlorpromazine. J Neuropathol Exp Neurol 29:337–353Google Scholar
  93. Fleischhauer K (1958) Über die Feinstruktur der Faserglia. Z Zellforsch 47:548–556PubMedPubMedCentralGoogle Scholar
  94. Flemming W (1895) Über den Bau der Spinalganglienzellen bei Säugethieren, und Bemerkungen über den der centralen Zellen. Arch Mikr Anat 46:379–394Google Scholar
  95. Forssmann WG (1964) Studien über den Feinbau des Ganglion cervicale superius der Ratte. Acta Anat 59:106–140PubMedPubMedCentralGoogle Scholar
  96. Forssmann WG, Tinguely H, Posternak JM, Rouiller C (1966) L’ultrastructure du ganglion cervical supérieur du rat. Les effets des rayons X. Z Zellforsch 72:325–343PubMedPubMedCentralGoogle Scholar
  97. Fraentzel O (1867) Beitrag zur Kenntniss von der Structur der spinalen und sympathischen Ganglienzellen. Virchows Arch 38:549–558Google Scholar
  98. Freeman SE, Patil VV, Durham PL (2008) Nitric oxide-proton stimulation of trigeminal ganglion neurons increases mitogen-activated protein kinase and phosphatase expression in neurons and satellite glial cells. Neuroscience 157:542–555PubMedPubMedCentralGoogle Scholar
  99. Friede RL, Johnstone MA (1967) Responses of thymidine labeling of nuclei in gray matter and nerve following sciatic transection. Acta Neuropathol 7:218–231Google Scholar
  100. Gabella G, Trigg P, McPhail H (1988) Quantitative cytology of ganglion neurons and satellite glial cells in the superior cervical ganglion of the sheep. Relationship with ganglion neuron size. J Neurocytol 17:753–769PubMedPubMedCentralGoogle Scholar
  101. Gaik GC, Farbman AI (1973) The chicken trigeminal ganglion. II. Fine structure of the neurons during development. J Morphol 141:57–75PubMedPubMedCentralGoogle Scholar
  102. Gallego R, Eyzaguirre C (1978) Membrane and action potential characteristics of A and C nodose ganglion cells studied in whole ganglia and in tissue slices. J Neurophysiol 41:1217–1232PubMedPubMedCentralGoogle Scholar
  103. Gehrmann J, Monaco S, Kreutzberg GW (1991) Spinal cord microglial cells and DRG satellite cells rapidly respond to transection of the rat sciatic nerve. Restor Neurol Neurosci 2:181–198PubMedPubMedCentralGoogle Scholar
  104. Gill JS, Windebank AJ (1998) Paracrine production of nerve growth factor during rat dorsal root ganglion development. Neurosci Lett 251:149–152PubMedPubMedCentralGoogle Scholar
  105. Glees P, Gopinath G (1973) Age changes in the centrally and peripherally located sensory neurons in rat. Z Zellforsch 141:285–298PubMedPubMedCentralGoogle Scholar
  106. Glover RA (1982) Chronological changes in acid phosphatase activity within neurons and perineuronal satellite cells of the inferior vagal ganglion of the cat induced by vagotomy. J Anat 134:215–225PubMedPubMedCentralGoogle Scholar
  107. Gonçalves NP, Costelha S, Saraiva MJ (2014) Glial cells in familial amyloidotic polyneuropathy. Acta Neuropathol Commun 2:177PubMedPubMedCentralGoogle Scholar
  108. Gotow T, Yoshikawa H, Hashimoto PH (1985) Distribution patterns of orthogonal arrays and alkaline phosphatase in plasma membranes of satellite cells in rat spinal ganglia. Anat Embryol 171:171–179PubMedPubMedCentralGoogle Scholar
  109. Graus F, Campo E, Cruz-Sanchez F, Ribalta T, Palacin A (1990) Expression of lymphocyte, macrophage and class I and II major histocompatibility complex antigens in normal human dorsal root ganglia. J Neurol Sci 98:203–211Google Scholar
  110. Gray EG (1959) Electron microscopy of neuroglial fibrils of the cerebral cortex. J Biophys Biochem Cytol 6:121–122PubMedPubMedCentralGoogle Scholar
  111. Gray EG (1960) Regular organisation of material in certain mitochondria of neuroglia of lizard brain. J Biophys Biochem Cytol 8:282–285PubMedPubMedCentralGoogle Scholar
  112. Grillo MA, Palay SL (1963) Ciliated Schwann cells in the autonomic nervous system of the adult rat. J Cell Biol 16:430–436PubMedPubMedCentralGoogle Scholar
  113. Grode ML, Murray MR (1973) Effects of methadone-HCl on dorsal root ganglia in organotypic culture. Exp Neurol 40:68–81Google Scholar
  114. Groneberg DA, Döring F, Nickolaus M, Daniel H, Fischer A (2001) Expression of PEPT2 peptide transporter mRNA and protein in glial cells of rat dorsal root ganglia. Neurosci Lett 304:181–184Google Scholar
  115. Grothe C, Meisinger C, Hertenstein A, Kurz H, Wewetzer K (1997) Expression of fibroblast growth factor-2 and fibroblast growth factor receptor 1 messenger RNAs in spinal ganglia and sciatic nerve: regulation after peripheral nerve lesion. Neuroscience 76:123–135PubMedPubMedCentralGoogle Scholar
  116. Gu Y, Chen Y, Zhang X, Li G-W, Wang C, Huang L-YM (2010) Neuronal soma-satellite glial cell interactions in sensory ganglia and the participation of purinergic receptors. Neuron Glia Biol 6:53–62PubMedPubMedCentralGoogle Scholar
  117. Hagedorn L, Paratore C, Brugnoli G, Baert J-L, Mercader N, Suter U, Sommer L (2000) The Ets domain transcription factor Erm distinguishes rat satellite glia from Schwann cells and is regulated in satellite cells by neuregulin signaling. Dev Biol 219:44–58PubMedPubMedCentralGoogle Scholar
  118. Hamburger V (1961) Experimental analysis of the dual origin of the trigeminal ganglion in the chick embryo. J Exp Zool 148:91–123PubMedPubMedCentralGoogle Scholar
  119. Hammarberg H, Piehl F, Cullheim S, Fjell J, Hökfelt T, Fried K (1996) GDNF mRNA in Schwann cells and DRG satellite cells after chronic sciatic nerve injury. Neuroreport 7:857–860PubMedPubMedCentralGoogle Scholar
  120. Hanani M, Huang TY, Cherkas PS, Ledda M, Pannese E (2002) Glial cell plasticity in sensory ganglia induced by nerve damage. Neuroscience 114:279–283PubMedPubMedCentralGoogle Scholar
  121. Hanker JS, Romanovicz DK, Moore GH (1974) Peroxisomes in satellite, Schwann and laminar cells associated with trigeminal sensory neurons. J Cell Biol 63:131aGoogle Scholar
  122. Hannover A (1840) Die Chromsäure, ein vorzügliches Mittel bei mikroskopischen Untersuchungen. Arch Anat Physiol Wiss Med 549–558Google Scholar
  123. Hannover A (1844) Recherches microscopiques sur le système nerveux. Philipsen, Brockhaus, Avenarius, CopenhagenGoogle Scholar
  124. Harrison RG (1904) Neue Versuche und Beobachtungen über die Entwicklung der peripheren Nerven der Wirbeltiere. Sitzungsbericht der niederrheinischen Gesellschaft für Natur und Heilkunde, Bonn, S 55–62Google Scholar
  125. Harvarik R (1977) Histochemische Untersuchungen über Veränderungen der Aktivität von Dehydrogenasen und Carboxylsäureesterasen in Spinalganglienzellen und Mantelzellen der Ratte nach Durchschneidung des Nervus ischiadicus. Dissertation, Frankfurt/MGoogle Scholar
  126. Hauw J-J, Boutry J-M, Hamam S, Escourolle R (1978) Lipidose médicamenteuse induite en culture de ganglion spinal de souris par le maléate de perhexiline. Résultats préliminaires concernant la toxicité aiguë du medicament. C R Acad Sci (D) 287:959–961Google Scholar
  127. Held H (1909) Ueber die Neuroglia marginalis der menschlichen Grosshirnrinde. Monats Psych Neurol 26(Ergänzungsheft):360–416Google Scholar
  128. Hendelman W (1969) The effect of thallium on peripheral nervous tissue in culture: a light and electron microscopic study. Anat Rec 163:198–199Google Scholar
  129. Herman SP, Klein R, Talley FA, Krigman MR (1973) An ultrastructural study of methylmercury-induced primary sensory neuropathy in the rat. Lab Invest 28:104–118Google Scholar
  130. Herzog E (1954) Über die periphere Glia in den sympathischen Ganglien. Z Zellforsch 40:199–206Google Scholar
  131. Hess A (1955) The fine structure of young and old spinal ganglia. Anat Rec 123:399–424Google Scholar
  132. Hibino H, Horio Y, Fujita A, Inanobe A, Doi K, Gotow T, Uchiyama Y, Kubo T, Kurachi Y (1999) Expression of an inwardly rectifying K+ channel, Kir4.1, in satellite cells of rat cochlear ganglia. Am J Physiol 277:C638–C644Google Scholar
  133. Hill TJ, Field HJ (1973) The interaction of herpes simplex virus with cultures of peripheral nervous tissue: an electron microscopic study. J Gen Virol 21:123–133Google Scholar
  134. Hinds JW, Ruffett TL (1971) Cell proliferation in the neural tube: an electron microscopic and Golgi analysis in the mouse cerebral vesicle. Z Zellforsch 115:226–264Google Scholar
  135. Holmgren E (1901) Beiträge zur Morphologie der Zelle. I. Nervenzellen. Anat Hefte 18:267–325Google Scholar
  136. Holmgren E (1902) Einige Worte über das “Trophospongium” verschiedener Zellarten. Anat Anz 20:433–440Google Scholar
  137. Holton B, Weston JA (1982) Analysis of glial cell differentiation in peripheral nervous tissue. I. S100 accumulation in quail embryo spinal ganglion cultures. Dev Biol 89:64–71Google Scholar
  138. Holtzman E, Peterson ER (1969) Uptake of protein by mammalian neurons. J Cell Biol 40:863–869PubMedPubMedCentralGoogle Scholar
  139. Hösli E, Hösli L (1978) Autoradiographic localization of the uptake of [3H]-GABA and [3H]L-glutamic acid in neurones and glial cells of cultured dorsal root ganglia. Neurosci Lett 7:173–176Google Scholar
  140. Hösli L, Andrès PF, Hösli E (1977) Action of GABA on neurones and satellite glial cells of cultured rat dorsal root ganglia. Neurosci Lett 6:79–83Google Scholar
  141. Hösli L, Andrès PF, Hösli E (1978) Neuron-glia interactions: indirect effect of GABA on cultured glial cells. Exp Brain Res 33:425–434Google Scholar
  142. Hösli L, Andrès PF, Hösli E (1979) Action of amino acid transmitters on cultured glial cells of the mammalian peripheral and central nervous system. J Physiol (Paris) 75:655–659Google Scholar
  143. Hossack J, Wyburn GM (1954) Electron microscopic studies of spinal ganglion cells. Proc R Soc Edinb B 65:239–250Google Scholar
  144. Huang T-Y, Cherkas PS, Rosenthal DW, Hanani M (2005) Dye coupling among satellite glial cells in mammalian dorsal root ganglia. Brain Res 1036:42–49Google Scholar
  145. Huang T-Y, Hanani M, Ledda M, De Palo S, Pannese E (2006) Aging is associated with an increase in dye coupling and in gap junction number in satellite glial cells of murine dorsal root ganglia. Neuroscience 137:1185–1192Google Scholar
  146. Huang T-Y, Belzer V, Hanani H (2010) Gap junctions in dorsal root ganglia: possible contribution to visceral pain. Eur J Pain 14:49.e1–49.e11Google Scholar
  147. Huang L-YM, Gu Y, Chen Y (2013) Communication between neuronal somata and satellite glial cells in sensory ganglia. Glia 61:1571–1581PubMedPubMedCentralGoogle Scholar
  148. Huerta JJ, Diaz-Trelles R, Naves FJ, Llamosas MM, Del Valle ME, Vega JA (1996) Epidermal growth factor receptor in adult human dorsal root ganglia. Anat Embryol 194:253–257Google Scholar
  149. Humbertson A Jr, Zimmermann E, Leedy M (1969) A chronological study of mitotic activity in satellite cell hyperplasia associated with chromatolytic neurons. Z Zellforsch 100:507–515Google Scholar
  150. Jacob C (2015) Transcriptional control of neural crest specification into peripheral glia. Glia 63:1883–1896Google Scholar
  151. Jacobs JM, Carmichael N, Cavanagh JB (1975) Ultrastructural changes in the dorsal root and trigeminal ganglia of rats poisoned with methyl mercury. Neuropathol Appl Neurobiol 1:1–19Google Scholar
  152. Jacobs JM, MacFarlane RM, Cavanagh JB (1976) Vascular leakage in the dorsal root ganglia of the rat, studied with horseradish peroxidase. J Neurol Sci 29:95–107Google Scholar
  153. Jancsó G, Kiraly E, Jancsó-Gábor A (1977) Pharmacologically-induced selective degeneration of chemosensitive primary sensory neurones. Nature 270:741–743Google Scholar
  154. Janota I (1972) Ultrastructural studies of a hereditary sensory neuropathy in mice (dystonia musculorum). Brain 95:529–536Google Scholar
  155. Jasmin L, Vit J-P, Bhargava A, Ohara PT (2010) Can satellite glial cells be therapeutic targets for pain control? Neuron Glia Biol 6:63–71PubMedPubMedCentralGoogle Scholar
  156. Jessen KR, Thorpe R, Mirsky R (1984) Molecular identity, distribution and heterogeneity of glial fibrillary acidic protein: an immunoblotting and immunohistochemical study of Schwann cells, satellite cells, enteric glia and astrocytes. J Neurocytol 13:187–200Google Scholar
  157. Jimenez-Andrade JM, Peters CM, Mejia NA, Ghilardi JR, Kuskowski MA, Mantyh PW (2006) Sensory neurons and their supporting cells located in the trigeminal, thoracic and lumbar ganglia differentially express markers of injury following intravenous administration of paclitaxel in the rat. Neurosci Lett 405:62–67Google Scholar
  158. Jones DS (1939) Studies on the origin of sheath cells and sympathetic ganglia in the chick. Anat Rec 73:343–357Google Scholar
  159. Joó F, Szolcsányi J, Jancsó-Gábor A (1969) Mitochondrial alterations in the spinal ganglion cells of the rat accompanying the long-lasting sensory disturbance induced by capsaicin. Life Sci 8:621–626Google Scholar
  160. Journey LJ, Burdman J, George P (1968) Ultrastructural studies on tissue culture cells treated with vincristine (NSC-67574). Cancer Chemother Rep 52:509–517Google Scholar
  161. Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210Google Scholar
  162. Kar S, Chabot J-G, Quirion R (1991) Quantitative autoradiographic localisation of [125I]endothelin-1 binding sites in spinal cord and dorsal root ganglia of the rat. Neurosci Lett 133:117–120Google Scholar
  163. Kawamata T, Ninomiya T, Toriyabe M, Yamamoto J, Niiyama Y, Omote K, Namiki A (2006) Immunohistochemical analysis of acid-sensing ion channel 2 expression in rat dorsal root ganglion and effects of axotomy. Neuroscience 143:175–187Google Scholar
  164. Key A, Retzius G (1873) Studien in der Anatomie des Nervensystems. Arch Mikr Anat 9:308–386Google Scholar
  165. Kiya T, Kawamata T, Namiki A, Yamakage M (2011) Role of satellite cell-derived L-serine in the dorsal root ganglion in paclitaxel-induced painful peripheral neuropathy. Neuroscience 174:190–199Google Scholar
  166. Kobayashi K, Fukuoka T, Yamanaka H, Dai Y, Obata K, Tokunaga A, Noguchi K (2006) Neurons and glial cells differentially express P2Y receptor mRNAs in the rat dorsal root ganglion and spinal cord. J Comp Neurol 498:443–454Google Scholar
  167. Kobayashi T, Yamauchi K, Matsuura Y, Kuniyoshi K, Takahashi K, Ohtori S (2015) The effects of generally administered anti-NGF receptor (p75NTR) antibody on pain-related behavior, dorsal root ganglia, and spinal glia activation in a rat model of brachial plexus avulsion. J Hand Surg Am 40:2017–2025Google Scholar
  168. Koelliker A (1905) Die Entwicklung der Elemente des Nervensystems. Z Wissen Zool 82:1–38Google Scholar
  169. Koeppen AH, Morral JA, Davis AN, Qian J, Petrocine SV, Knutson MD, Gibson WM, Cusack MJ, Li D (2009) The dorsal root ganglion in Friedreich’s ataxia. Acta Neuropathol 118:763–776Google Scholar
  170. Kohn A (1907) Über die Scheidenzellen (Randzellen) peripherer Ganglienzellen. Anat Anz 30:154–159Google Scholar
  171. Kohno K (1969) Ultrastructure of long gliosome in satellite cell of frog spinal ganglion. Bull Tokyo Med Dent Univ 16:303–309Google Scholar
  172. Koike T, Wakabayashi T, Mori T, Takamori Y, Hirahara Y, Yamada H (2014) Sox2 in the adult rat sensory nervous system. Histochem Cell Biol 141:301–309PubMedPubMedCentralGoogle Scholar
  173. Koneff H (1887) Beiträge zur Kenntnis in den Nervenzellen der peripheren Ganglien. Mitt Naturforsch Ges Bern, Nr 1143–1168, S 13–44Google Scholar
  174. Krajčí D (1973) Ontogenetic development of the relation between neurons and satellite cells in spinal ganglia. Folia Morphol (Warsz) 21:139–141Google Scholar
  175. Krajčí D (1975) Unusual intracapsular and interstitial cells in spinal ganglia of cat and their interrelationships. Acta Univ Palacki Olomuc Fac Med 73:165–176Google Scholar
  176. Kraus-Ruppert R, Laissue J, Bürki H, Odartchenko N (1975) Kinetic studies on glial, Schwann and capsular cells labelled with [3H]thymidine in cerebrospinal tissue of young mice. J Neurol Sci 26:555–563PubMedPubMedCentralGoogle Scholar
  177. Krawczyk WS, Wilgram GF (1973) Hemidesmosome and desmosome morphogenesis during epidermal wound healing. J Ultrastruct Res 45:93–101PubMedPubMedCentralGoogle Scholar
  178. Kubota K, Hioki K (1943) Zytologische Untersuchungen der Mantelzellen im menschlichen Spinalganglion. Okajimas Folia Anat Jpn 22:111–126Google Scholar
  179. Kummer W, Behrends S, Schwarzlmüller T, Fischer A, Koesling D (1996) Subunits of soluble guanylyl cyclase in rat and guinea-pig sensory ganglia. Brain Res 721:191–195PubMedPubMedCentralGoogle Scholar
  180. Kung L-H, Gong K, Adedoyin M, Ng J, Bhargava A, Ohara PT, Jasmin L (2013) Evidence for glutamate as a neuroglial transmitter within sensory ganglia. PLoS One 8:e68312PubMedPubMedCentralGoogle Scholar
  181. Kuntz A, Sulkin NM (1947) The neuroglia in the autonomic ganglia: cytologic structure and reactions to stimulation. J Comp Neurol 86:467–477PubMedPubMedCentralGoogle Scholar
  182. Kuo L-T, Simpson A, Schänzer A, Tse J, An S-F, Scaravilli F, Groves MJ (2005) Effects of systemically administered NT-3 on sensory neuron loss and nestin expression following axotomy. J Comp Neurol 482:320–332PubMedPubMedCentralGoogle Scholar
  183. Lahl R (1975) Die Pathomorphologie des ZNS bei der Tetrachlorkohlenstoffintoxication. Zentralbl Allg Pathol 119:276–285PubMedPubMedCentralGoogle Scholar
  184. LaVail JH, Topp KS, Giblin PA, Garner JA (1997) Factors that contribute to the transneuronal spread of herpes simplex virus. J Neurosci Res 49:485–496PubMedPubMedCentralGoogle Scholar
  185. Ledda M, Barni L, Altieri L, Pannese E (1999) Amount and distribution of lipofuscin in nerve and satellite cells from spinal ganglia of young adult and aged rabbits. J Submicrosc Cytol Pathol 31:237–246PubMedPubMedCentralGoogle Scholar
  186. Ledda M, Barni L, Altieri L, Pannese E (2003) The Golgi apparatus of satellite cells associated with spinal ganglion neurons: changes with age in the rabbit. J Submicrosc Cytol Pathol 35:267–270PubMedPubMedCentralGoogle Scholar
  187. Leech RW (1967) Changes in satellite cells of rat dorsal root ganglia during central chromatolysis. An electron microscopic study. Neurology 17:349–358PubMedPubMedCentralGoogle Scholar
  188. Lenghaus C, Mann JA, Done JT, Bradley R (1976) Neuropathology of experimental swine vesicular disease in pigs. Res Vet Sci 21:19–27PubMedPubMedCentralGoogle Scholar
  189. Lenhossék M (1897) Über den Bau der Spinalganglienzellen des Menschen. Arch Psychiatr Nervenkr 29:345–380CrossRefGoogle Scholar
  190. Lenhossék M von (1907) Zur Kenntniss der Spinalganglienzellen. Arch Mikr Anat 69:245–263Google Scholar
  191. Levi G (1907) La capsula delle cellule dei gangli sensitivi. Penetrazione di fibre collagene nel loro protoplasma. Monit Zool Ital 18:153–158Google Scholar
  192. Levi G (1908) I gangli cerebrospinali. Arch Ital Anat Embriol 7(Suppl):1–392Google Scholar
  193. Levin MJ, Cai G-Y, Manchak MD, Pizer LI (2003) Varicella-zoster virus DNA in cells isolated from human trigeminal ganglia. J Virol 77:6979–6987PubMedPubMedCentralGoogle Scholar
  194. Levy BDFA, Cunha JDC, Chadi G (2007) Cellular analysis of S100β and fibroblast growth factor-2 in the dorsal root ganglia and sciatic nerve of rodents. Focus on paracrine actions of activated satellite cells after axotomy. Int J Neurosci 117:1481–1503Google Scholar
  195. Leydig F (1851) Zur Anatomie und Histologie der Chimaera monstrosa. Arch Anat Physiol Wiss Med 241–271Google Scholar
  196. Li M, Shi J, Tang J-r, Chen D, Ai B, Chen J, Wang L-n, Cao F-y, Li L-l, Lin C-y, Guan X-m (2005) Effects of complete Freund’s adjuvant on immunohistochemical distribution of IL-1β and IL-1R I in neurons and glia cells of dorsal root ganglion. Acta Pharmacol Sin 26:192–198PubMedPubMedCentralGoogle Scholar
  197. Li J, Vause CV, Durham PL (2008) Calcitonin gene-related peptide stimulation of nitric oxide synthesis and release from trigeminal ganglion glial cells. Brain Res 1196:22–32PubMedPubMedCentralGoogle Scholar
  198. Lieberman AR (1971) The axon reaction: a review of the principal features of perikaryal responses to axon injury. Int Rev Neurobiol 14:49–124PubMedPubMedCentralGoogle Scholar
  199. Lieberman AR (1976) Sensory ganglia. In: Landon DN (ed) The peripheral nerve. Chapman and Hall, London, pp 188–278Google Scholar
  200. Lindner G, Grosse G (1974) Morphometrische Untersuchungen am Ganglion trigeminale vom Hühnerembryo in situ and in der In-vitro-Kultur. Z Mikr Anat Forsch 88:439–448PubMedPubMedCentralGoogle Scholar
  201. Liu W, Glueckert R, Linthicum FH, Rieger G, Blumer M, Bitsche M, Pechriggl E, Rask-Andersen H, Schrott-Fischer A (2014) Possible role of gap junction intercellular channels and connexin 43 in satellite glial cells (SGCs) for preservation of human spiral ganglion neurons. Cell Tissue Res 355:267–278PubMedPubMedCentralGoogle Scholar
  202. Lodin Z, Booher J, Kasten FH (1970) Phase-contrast cinematographic study of dissociated neurons from embryonic chick dorsal root ganglia cultured in the Rose chamber. Exp Cell Res 60:27–39PubMedPubMedCentralGoogle Scholar
  203. Lodin Z, Faltin J, Booher J, Hartman J, Sensenbrenner M (1973) Formation of intercellular contacts in cultures of dissociated neurons from embryonic chicken dorsal root ganglia. An electron microscopic and scanning electron microscopic study. Neurobiology 3:376–390Google Scholar
  204. Low FN (1970) Interstitial bodies in the early chick embryo. Am J Anat 128:45–56PubMedPubMedCentralGoogle Scholar
  205. Lu X, Richardson PM (1991) Inflammation near the nerve cell body enhances axonal regeneration. J Neurosci 11:972–978PubMedPubMedCentralGoogle Scholar
  206. Magnusson S, Ekström J, Elmér E, Kanje M, Ny L, Alm P (2000) Heme oxigenase-1, heme oxigenase-2 and biliverdin reductase in peripheral ganglia from rat, expression and plasticity. Neuroscience 95:821–829Google Scholar
  207. Mannu A (1935) Ricerche sulla evoluzione dei neuroni nei gangli spinali dei mammiferi (Bos taurus). Riv Biol 19:225–250Google Scholar
  208. Martinelli C, Sartori P, De Palo S, Ledda M, Pannese E (2005) Increase in number of the gap junctions between satellite neuroglial cells during lifetime: an ultrastructural study in rabbit spinal ganglia from youth to extremely advanced age. Brain Res Bull 67:19–23PubMedPubMedCentralGoogle Scholar
  209. Martinelli C, Sartori P, De Palo S, Ledda M, Pannese E (2006a) The perineuronal glial tissue of spinal ganglia. Quantitative changes in the rabbit from youth to extremely advanced age. Anat Embryol 211:455–463PubMedPubMedCentralGoogle Scholar
  210. Martinelli C, Sartori P, Ledda M, Pannese E (2006b) A study of mitochondria in spinal ganglion neurons during life: quantitative changes from youth to extremely advanced age. Tissue Cell 38:93–98PubMedPubMedCentralGoogle Scholar
  211. Martinelli C, Sartori P, Ledda M, Pannese E (2007) Mitochondria in perineuronal satellite cell sheaths of rabbit spinal ganglia: quantitative changes during life. Cells Tissues Organs 186:141–146PubMedPubMedCentralGoogle Scholar
  212. Masaki T, Matsumura K, Hirata A, Yamada H, Hase A, Shimizu T, Yorifuji H, Motoyoshi K, Kamakura K (2001) Expression of dystroglycan complex in satellite cells of dorsal root ganglia. Acta Neuropathol 101:174–178PubMedPubMedCentralGoogle Scholar
  213. Masurovsky EB, Bunge MB, Bunge RP (1967) Cytological studies of organotypic cultures of rat dorsal root ganglia following X-irradiation in vitro. I. Changes in neurons and satellite cells. J Cell Biol 32:467–496PubMedPubMedCentralGoogle Scholar
  214. Masurovsky EB, Peterson ER, Crain SM, Horwitz SB (1983) Morphological alterations in dorsal root ganglion neurons and supporting cells of organotypic mouse spinal cord-ganglion cultures exposed to taxol. Neuroscience 10:491–509PubMedPubMedCentralGoogle Scholar
  215. Matsuda S, Kobayashi N, Terashita T, Shimokawa T, Shigemoto K, Mominoki K, Wakisaka H, Saito S, Miyawaki K, Saito K, Kushihata F, Chen J, Gao S-Y, Li C-Y, Wang M, Fujiwara T (2005) Phylogenetic investigation of Dogiel’s pericellular nests and Cajal’s initial glomeruli in the dorsal root ganglion. J Comp Neurol 491:234–245PubMedPubMedCentralGoogle Scholar
  216. Matsumoto E, Rosenbluth J (1986) Structure of the satellite cell sheath around the cell body, axon hillock, and initial segment of frog dorsal root ganglion cells. Anat Rec 215:182–191Google Scholar
  217. Matthews MR, Raisman G (1972) A light and electron microscopic study of the cellular response to axonal injury in the superior cervical ganglion of the rat. Proc R Soc Lond B Biol Sci 181:43–79Google Scholar
  218. McCracken RM, Dow C (1973a) An electron microscopic study of normal bovine spinal ganglia and nerves. Acta Neuropathol 25:127–137PubMedPubMedCentralGoogle Scholar
  219. McCracken RM, Dow C (1973b) An electron microscopic study of Aujeszky’s disease. Acta Neuropathol 25:207–219PubMedPubMedCentralGoogle Scholar
  220. McLachlan EM, Jänig W, Devor M, Michaelis M (1993) Peripheral nerve injury triggers noradrenergic sprouting within dorsal root ganglia. Nature 363:543–546PubMedPubMedCentralGoogle Scholar
  221. Meier C, Glees P (1971) Der Einfluss des Centrophenoxins auf das Alterspigment in Satellitenzellen und Neuronen der Spinalganglien seniler Ratten. Eine elektronenmikroskopische Untersuchung. Acta Neuropathol 17:310–320PubMedPubMedCentralGoogle Scholar
  222. Meller K, Waelsch M (1975) Changes in glia-neuron relationships in cell cultures of spinal ganglia caused by puromycin. Cell Tissue Res 160:431–442PubMedPubMedCentralGoogle Scholar
  223. Miller R, Varon S, Kruger L, Coates PW, Orkand PM (1970) Formation of synaptic contacts on dissociated chick embryo sensory ganglion cells in vitro. Brain Res 24:356–358PubMedPubMedCentralGoogle Scholar
  224. Miller KE, Richards BA, Kriebel RM (2002) Glutamine-, glutamine synthetase-, glutamate dehydrogenase- and pyruvate carboxylase-immunoreactivities in the rat dorsal root ganglion and peripheral nerve. Brain Res 945:202–211PubMedPubMedCentralGoogle Scholar
  225. Mirsky R, Jessen JR, Schachner M, Goridis C (1986) Distribution of the adhesion molecules N-CAM and L1 on peripheral neurons and glia in adult rats. J Neurocytol 15:799–815PubMedPubMedCentralGoogle Scholar
  226. Morris R, Southam E, Braid DJ, Garthwaite J (1992) Nitric oxide may act as a messenger between dorsal root ganglion neurones and their satellite cells. Neurosci Lett 137:29–32PubMedPubMedCentralGoogle Scholar
  227. Moses HL, Beaver DL, Ganote CE (1965) Electron microscopy of the trigeminal ganglion. I. Comparative ultrastructure. Arch Pathol 79:541–556PubMedPubMedCentralGoogle Scholar
  228. Mudge AW (1981) Effect of non-neuronal cells on peptide content of cultured sensory neurones. J Exp Biol 95:195–203PubMedPubMedCentralGoogle Scholar
  229. Mudge AW (1984) Schwann cells induce morphological transformation of sensory neurones in vitro. Nature 309:367–369Google Scholar
  230. Muratori L, Ronchi G, Raimondo S, Geuna S, Giacobini-Robecchi MG, Fornaro M (2015) Generation of new neurons in dorsal root ganglia in adult rats after peripheral nerve crush injury. Neural Plast 2015:860546PubMedPubMedCentralGoogle Scholar
  231. Murray MR, Peterson ER (1964) Actions of drugs and toxic substances on nervous tissue in culture. In: Richter D (ed) Comparative neurochemistry. Pergamon, Oxford, London, New York, Paris, pp 451–458Google Scholar
  232. Naciff JM, Kaetzel MA, Behbehani MM, Dedman JR (1996) Differential expression of annexins I-VI in the rat dorsal root ganglia and spinal cord. J Comp Neurol 368:356–370Google Scholar
  233. Nageotte J (1907a) Neurophagie dans les greffes de ganglions rachidiens. Rev Neurol 15:933–944Google Scholar
  234. Nageotte J (1907b) Troisième note sur la greffe des ganglions rachidiens; mode de destruction des cellules nerveuses mortes. C R Soc Biol (Paris) 62:381–384Google Scholar
  235. Nakamura Y, Iga K, Shibata T, Shudo M, Kataoka K (1993) Glial plasmalemmal vesicles: a subcellular fraction from rat hippocampal homogenate distinct from synaptosomes. Glia 9:48–56Google Scholar
  236. Narayanan CH, Narayanan Y (1980) Neural crest and placodal contribution in the development of the glossopharyngeal-vagal complex in the chick. Anat Rec 196:71–82PubMedPubMedCentralGoogle Scholar
  237. Nathaniel EJH, Nathaniel DR (1973) Electron microscopic studies of spinal ganglion cells following crushing of dorsal roots in adult rat. J Ultrastruct Res 45:168–182PubMedPubMedCentralGoogle Scholar
  238. Nawzatzky I (1933) Zur Kenntnis der Farbspeicherung in peripherischen Ganglien der Maus. Z Zellforsch 20:229–236Google Scholar
  239. Nemiloff A (1908) Beobachtungen über die Nervenelemente bei Ganoïden und Knochenfischen. I. Der Bau der Nervenzellen. Arch Mikr Anat 72:1–46Google Scholar
  240. Newcomb EH, Steer MW, Hepler PK, Wergin WP (1968) An atypical crista resembling a “tight junction” in bean root mitochondria. J Cell Biol 39:35–42PubMedPubMedCentralGoogle Scholar
  241. Novikoff AB, Quintana N, Villaverde H, Forschirm R (1966) Nucleoside phosphatase and cholinesterase activities in dorsal root ganglia and peripheral nerve. J Cell Biol 29:525–545PubMedPubMedCentralGoogle Scholar
  242. Obersteiner EJ, Sharma RP (1978) Effect of vitamin E on selenium cytotoxicity in chick ganglia cultures. Toxicology 9:165–172PubMedPubMedCentralGoogle Scholar
  243. Ohara PT, Vit J-P, Bhargava A, Jasmin L (2008) Evidence for a role of connexin43 in trigeminal pain using RNA interference in vivo. J Neurophysiol 100:3064–3073PubMedPubMedCentralGoogle Scholar
  244. Ohara PT, Vit J-P, Bhargava A, Romero M, Sundberg C, Charles AC, Jasmin L (2009) Gliopathic pain: when satellite glial cells go bad. Neuroscientist 15:450–463PubMedPubMedCentralGoogle Scholar
  245. Ohtori S, Takahashi K, Moriya H, Myers RR (2004) TNF-α and TNF-α receptor type 1 upregulation in glia and neurons after peripheral nerve injury. Studies in murine DRG and spinal cord. Spine 29:1082–1088PubMedPubMedCentralGoogle Scholar
  246. Olsson Y (1971) Studies on vascular permeability in peripheral nerves. IV. Distribution of intravenously injected protein tracers in the peripheral nervous system of various species. Acta Neuropathol 17:114–126PubMedPubMedCentralGoogle Scholar
  247. Ortiz-Picón JM (1932) La oligodendroglía de los ganglios sensitívos. Rev Españ Biol 1:19–24Google Scholar
  248. Ortiz-Picón JM (1949) Nouvelle contribution à l’étude de la névroglie (oligodendroglie) des ganglions sensitifs. Bull Histol Appl 26:113–123Google Scholar
  249. Ortiz-Picón JM (1955) The neuroglia of the sensory ganglia. Anat Rec 121:513–529Google Scholar
  250. Palay SL (1957) Contributions of electron microscopy to neuroanatomy. In: Windle WF (ed) New research techniques of neuroanatomy. Thomas, Springfield, pp 5–16Google Scholar
  251. Palumbi G (1944) Osservazioni sulle capsule pericellulari e sulle cellule satelliti dei gangli spinali e simpatici. Ricerche Morf 20/21:117–144Google Scholar
  252. Pannese E (1960) Observations on the morphology, submicroscopic structure and biological properties of satellite cells (s.c.) in sensory ganglia of mammals. Z Zellforsch 52:567–597Google Scholar
  253. Pannese E (1963) Investigations on the ultrastructural changes of the spinal ganglion neurons in the course of axon regeneration and cell hypertrophy. II. Changes during cell hypertrophy and comparison between the ultrastructure of nerve cells of the same type under different functional conditions. Z Zellforsch 61:561–586Google Scholar
  254. Pannese E (1964) Number and structure of perisomatic satellite cells of spinal ganglia under normal conditions or during axon regeneration and neuronal hypertrophy. Z Zellforsch 63:568–592Google Scholar
  255. Pannese E (1968a) Developmental changes of the endoplasmic reticulum and ribosomes in nerve cells of the spinal ganglia of the domestic fowl. J Comp Neurol 132:331–364Google Scholar
  256. Pannese E (1968b) Temporary junctions between neuroblasts in the developing spinal ganglia of the domestic fowl. J Ultrastruct Res 21:233–250Google Scholar
  257. Pannese E (1969) Electron microscopical study on the development of the satellite cell sheath in spinal ganglia. J Comp Neurol 135:381–422Google Scholar
  258. Pannese E (1974) The histogenesis of the spinal ganglia. Adv Anat Embryol Cell Biol 47(5):1–97Google Scholar
  259. Pannese E (1978) The response of the satellite and other non-neuronal cells to the degeneration of neuroblasts in chick embryo spinal ganglia. Cell Tissue Res 190:1–14Google Scholar
  260. Pannese E (1981) The satellite cells of the sensory ganglia. Adv Anat Embryol Cell Biol 65:1–111Google Scholar
  261. Pannese E (2015) Neurocytology. Fine structure of neurons, nerve processes, and neuroglial cells, 2nd edn. Springer, New YorkGoogle Scholar
  262. Pannese E, Procacci P (2002) Ultrastructural localization of NGF receptors in satellite cells of the rat spinal ganglia. J Neurocytol 31:755–763Google Scholar
  263. Pannese E, Bianchi R, Calligaris B, Ventura R, Weibel ER (1972) Quantitative relationships between nerve and satellite cells in spinal ganglia. An electron microscopical study. I. Mammals. Brain Res 46:215–234Google Scholar
  264. Pannese E, Ventura R, Bianchi R (1975) Quantitative relationships between nerve and satellite cells in spinal ganglia: an electron microscopical study. II. Reptiles. J Comp Neurol 160:463–476Google Scholar
  265. Pannese E, Luciano L, Iurato S, Reale E (1977) Intercellular junctions and other membrane specializations in developing spinal ganglia: a freeze-fracture study. J Ultrastruct Res 60:169–180Google Scholar
  266. Pannese E, Luciano L, Reale E (1978) Intercellular junctions in developing spinal ganglia. Zoon 6:129–138Google Scholar
  267. Pannese E, Rigamonti L, Procacci P, Ledda M, Arcidiacono G, Frattola D (1987) An electron microscope study of quantitative relationships between axon and Schwann cell sheath in myelinated fibres of peripheral nerves. Anat Embryol 175:423–430Google Scholar
  268. Pannese E, Arcidiacono G, Frattola D, Rigamonti L, Procacci P, Ledda M (1988) Quantitative relationships between axoplasm and Schwann cell sheath in unmyelinated nerve fibres. An electron microscope study. J Anat 159:49–56PubMedPubMedCentralGoogle Scholar
  269. Pannese E, Ledda M, Arcidiacono G, Rigamonti L (1991) Clusters of nerve cell bodies enclosed within a common connective tissue envelope in the spinal ganglia of the lizard and rat. Cell Tissue Res 264:209–214Google Scholar
  270. Pannese E, Procacci P, Ledda M, Conte V (1993) The percentage of nerve cell bodies arranged in clusters decreases with age in the spinal ganglia of adult rabbits. Anat Embryol 187:331–334Google Scholar
  271. Pannese E, Rigamonti L, Ledda M, Arcidiacono G (1994) Perikaryal projections of spinal ganglion neurons: quantitative differences between membrane domains in contact with different microenvironments. J Anat 185:497–502PubMedPubMedCentralGoogle Scholar
  272. Pannese E, Ledda M, Conte V, Rigamonti L, Procacci P (1995) On the influence of the perineuronal microenvironment on the outgrowth of perikaryal projections of spinal ganglion neurons. J Submicrosc Cytol Pathol 27:303–308Google Scholar
  273. Pannese E, Procacci P, Ledda M, Conte V (1996) Age-related reduction of the satellite cell sheath around spinal ganglion neurons in the rabbit. J Neurocytol 25:137–146Google Scholar
  274. Pannese E, Ledda M, Martinelli C, Sartori P (1997) Age-related decrease of the perineuronal satellite cell number in the rabbit spinal ganglia. J Peripher Nerv Syst 2:77–82Google Scholar
  275. Pannese E, Procacci P, Berti E, Ledda M (1999) The perikaryal surface of spinal ganglion neurons: differences between domains in contact with satellite cells and in contact with the extracellular matrix. Anat Embryol 199:199–206Google Scholar
  276. Pannese E, Ledda M, Cherkas PS, Huang TY, Hanani M (2003) Satellite cell reactions to axon injury of sensory ganglion neurons. Increase in number of gap junctions and formation of bridges connecting previously separate perineuronal sheaths. Anat Embryol 206:337–347Google Scholar
  277. Patterson PH, Chun LLY (1974) The influence of non-neuronal cells on catecholamine and acetylcholine synthesis and accumulation in cultures of dissociated sympathetic neurons. Proc Natl Acad Sci U S A 71:3607–3610PubMedPubMedCentralGoogle Scholar
  278. Pazour GJ, Witman GB (2003) The vertebrate primary cilium is a sensory organelle. Curr Opin Cell Biol 15:105–110Google Scholar
  279. Penfield W (1932) Tumors of the sheaths of the nervous system. In: Penfield W (ed) Cytology and cellular pathology of the nervous system, vol 3. Hoeber, New York, pp 953–990Google Scholar
  280. Penta P (1934) Osservazioni sulla capsula nei gangli spinali. Riv Patol Nerv Ment 44:509–513Google Scholar
  281. Peters CM, Jimenez-Andrade JM, Jonas BM, Sevcik MA, Koewler NJ, Ghilardi JR, Wong GY, Mantyh PW (2007) Intravenous paclitaxel administration in the rat induces a peripheral sensory neuropathy characterized by macrophage infiltration and injury to sensory neurons and their supporting cells. Exp Neurol 203:42–54Google Scholar
  282. Pick J (1963) The submicroscopic organization of the sympathetic ganglion in the frog (Rana pipiens). J Comp Neurol 120:409–462Google Scholar
  283. Pilar G, Landmesser L (1976) Ultrastructural differences during embryonic cell death in normal and peripherally deprived ciliary ganglia. J Cell Biol 68:339–356Google Scholar
  284. Pineda A, Maxwell DS, Kruger L (1967) The fine structure of neurons and satellite cells in the trigeminal ganglion of cat and monkey. Am J Anat 121:461–488Google Scholar
  285. Pomerat CM, Hendelman WJ, Raiborn CW Jr, Massey JF (1967) Dynamic activities of nervous tissue in vitro. In: Hydén H (ed) The neuron. Elsevier, Amsterdam, pp 119–178Google Scholar
  286. Pomeroy SL, Zurakowski D, Khoxayo S, Endara M, Dikkes P (1996) Postnatal addition of satellite cells to parasympathetic neurons. J Comp Neurol 375:518–525Google Scholar
  287. Pomonis JD, Rogers SD, Peters CM, Ghilardi JR, Mantyh PW (2001) Expression and localization of endothelin receptors: implications for the involvement of peripheral glia in pain. J Neurosci 21:999–1006Google Scholar
  288. Popken GJ, Farel PB (1997) Sensory neuron number in neonatal and adult rats estimated by means of stereologic and profile-based methods. J Comp Neurol 386:8–15Google Scholar
  289. Price TJ, Hargreaves KM, Cervero F (2006) Protein expression and mRNA cellular distribution of the NKCC1 cotransporter in the dorsal root and trigeminal ganglia of the rat. Brain Res 1112:146–158PubMedPubMedCentralGoogle Scholar
  290. Prineas J, Spencer PS (1975) Pathology of the nerve cell body in disorders of the peripheral nervous system. In: Dyck PJ, Thomas PK, Lambert EH (eds) Peripheral neuropathy, vol 1. Saunders, Philadelphia, London, Toronto, pp 253–295Google Scholar
  291. Procacci P, Magnaghi V, Pannese E (2008) Perineuronal satellite cells in mouse spinal ganglia express the gap junction protein connexin43 throughout life with decline in old age. Brain Res Bull 75:562–569PubMedPubMedCentralGoogle Scholar
  292. Pruginin-Bluger M, Shelton DL, Kalcheim C (1997) A paracrine effect for neuron-derived BDNF in development of dorsal root ganglia: stimulation of Schwann cell myelin protein expression by glial cells. Mech Dev 61:99–111PubMedPubMedCentralGoogle Scholar
  293. Quade RH (1939) A new staining technic originated to demonstrate the capsular cells of the sympathetic nervous system. Proc Mayo Clin 14:555–560Google Scholar
  294. Ramό n y Cajal S (1890) Sobre la existencia de terminaciones nerviosas pericelulares en los ganglios nerviosos raquidianos. Pequeñas Comun Anat (Barcelona) pp 1–5Google Scholar
  295. Ramόn y Cajal S (1907) Die Struktur der sensiblen Ganglien des Menschen und der Tiere. Ergebn Anat Entwickl Gesch 16:177–215Google Scholar
  296. Ramόn y Cajal S (1909) Histologie du système nerveux de l’homme et des vertébrés, vol 1. Maloine, ParisGoogle Scholar
  297. Ramόn y Cajal S, Oloriz F (1897) Los ganglios sensitivos craneales de los mamiferos. Rev Trim Micr 2:129–151Google Scholar
  298. Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S (1998) Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci U S A 95:11981–11986PubMedPubMedCentralGoogle Scholar
  299. Rashid MH, Inoue M, Matsumoto M, Ueda H (2004) Switching of bradykinin-mediated nociception following partial sciatic nerve injury in mice. J Pharmacol Exp Ther 308:1158–1164PubMedPubMedCentralGoogle Scholar
  300. Reichelt M, Zerboni L, Arvin AM (2008) Mechanisms of varicella-zoster virus neuropathogenesis in human dorsal root ganglia. J Virol 82:3971–3983PubMedPubMedCentralGoogle Scholar
  301. Remak R (1838) Observationes anatomicae et microscopicae de systematis nervosi structura. Dissertation, BeroliniGoogle Scholar
  302. Retzius G (1894) Zur Frage von den freien Nervenendigungen in den Spinalganglien. Biol Untersuch NF 6:59–61Google Scholar
  303. Riegele L (1932) Beitrag zur Kenntnis des Scheidenplasmodiums im autonomen Nervensystem. Z Zellforsch 15:374–397Google Scholar
  304. Río Hortega P, Polak M, Prado JM (1942) Investigaciones sobre la neuroglia de los ganglios sensitivos. Arch Histol (Buenos Aires) 1:233–275Google Scholar
  305. Rosenbluth J (1962a) The fine structure of neurons and satellite cells in spinal ganglia of the toad. Anat Rec 142:344Google Scholar
  306. Rosenbluth J (1962b) The fine structure of acoustic ganglia in the rat. J Cell Biol 12:329–359PubMedPubMedCentralGoogle Scholar
  307. Rosenbluth J (1963) Contrast between osmium-fixed and permanganate-fixed toad spinal ganglia. J Cell Biol 16:143–157PubMedPubMedCentralGoogle Scholar
  308. Rosenbluth J, Palay SL (1961) The fine structure of nerve cell bodies and their myelin sheaths in the eighth nerve ganglion of the goldfish. J Biophys Biochem Cytol 9:853–877PubMedPubMedCentralGoogle Scholar
  309. Rosenbluth J, Wissig SL (1964) The distribution of exogenous ferritin in toad spinal ganglia and the mechanism of its uptake by neurons. J Cell Biol 23:307–325PubMedPubMedCentralGoogle Scholar
  310. Rozanski GM, Kim H, Li Q, Wong FK, Stanley EF (2012) Slow chemical transmission between dorsal root ganglion neuron somata. Eur J Neurosci 36:3314–3321PubMedPubMedCentralGoogle Scholar
  311. Rozanski GM, Nath AR, Adams ME, Stanley EF (2013) Low voltage-activated calcium channels gate transmitter release at the dorsal root ganglion sandwich synapse. J Physiol 591:5575–5583PubMedPubMedCentralGoogle Scholar
  312. Sakuma E, Wang HJ, Asai Y, Tamaki D, Amano K, Mabuchi Y, Herbert DC, Soji T (2001) Gap junctional communication between the satellite cells of rat dorsal root ganglia. Acta Anat Nippon 76:297–302PubMedPubMedCentralGoogle Scholar
  313. Sandelin M, Zabihi S, Liu L, Wicher G, Kozlova EN (2004) Metastasis-associated S100A4 (Mts1) protein is expressed in subpopulations of sensory and autonomic neurons and in Schwann cells of the adult rat. J Comp Neurol 473:233–243PubMedPubMedCentralGoogle Scholar
  314. Sato M, Austin G (1961) Intracellular potentials of mammalian dorsal root ganglion cells. J Neurophysiol 24:569–582PubMedPubMedCentralGoogle Scholar
  315. Schaffer J (1896) Über einen neuen Befund von Centrosomen in Ganglien- und Knorpelzellen. Sitzungsber Akad Wiss Wien 105:21–28Google Scholar
  316. Scharenberg K (1952) Glia and the elements of Schwann of the human Gasserian ganglion. Trab Inst Cajal Invest Biol 44:75–94Google Scholar
  317. Scharf JH (1958) Sensible Ganglien. In: von Möllendorf W, Bargmann W (Hrsg) Handbuch der mikroskopischen Anatomie des Menschen, Bd4/3. Springer, S. 14–15, 290–300Google Scholar
  318. Schlaepfer WW (1969) Experimental lead neuropathy: a disease of the supporting cells in the peripheral nervous system. J Neuropathol Exp Neurol 28:401–418PubMedPubMedCentralGoogle Scholar
  319. Schlaepfer WW (1971) Cadmium-incidence injury in the rat spinal ganglia. J Neuropathol Exp Neurol 30:141–142PubMedPubMedCentralGoogle Scholar
  320. Schon F, Kelly JS (1974a) Autoradiographic localisation of [3H]GABA and [3H]glutamate over satellite glial cells. Brain Res 66:275–288Google Scholar
  321. Schon F, Kelly JS (1974b) The characterisation of [3H]GABA uptake into the satellite glial cells of rat sensory ganglia. Brain Res 66:289–300Google Scholar
  322. Schramm J (1864) Neue Untersuchungen über den Bau der Spinalganglien. Med Inaug-Diss, WürzburgGoogle Scholar
  323. Schröder JM (1970) Zur Pathogenese der Isoniazid-Neuropathie. II Phasenkontrast-und elektronenmikroskopische Untersuchungen am Rückenmark, an Spinalganglien und Muskelspindeln. Acta Neuropathol 16:324–341CrossRefGoogle Scholar
  324. Schultze M (1871) Allgemeines über die Structurelemente des Nervensystems. In: Stricker S (Hrsg) Handbuch der Lehre von den Geweben des Menschen und der Thiere, Bd 1. Engelmann, Leipzig, S 108–136Google Scholar
  325. Schwandt H-D (1976) Enzymhistochemische Untersuchungen über Veränderungen sauer Phosphatasen, der alkalischen Phosphatase, Adenosintriphosphatase und unspezifischen Esterase in Spinalganglienzellen und Mantelzellen der Ratte nach Durchschneidung des N. ischiadicus. Inaug-Diss, FrankfurtGoogle Scholar
  326. Sharma K, Korade Z, Frank E (1995) Late-migrating neuroepithelial cells from the spinal cord differentiate into sensory ganglion cells and melanocytes. Neuron 14:143–152PubMedPubMedCentralGoogle Scholar
  327. Shimeld C, Whiteland JL, Williams NA, Easty DL, Hill TJ (1997) Cytokine production in the nervous system of mice during acute and latent infection with herpes simplex virus type 1. J Gen Virol 78:3317–3325PubMedPubMedCentralGoogle Scholar
  328. Shimizu Y (1965) The satellite cells in cultures of dissociated spinal ganglia. Z Zellforsch 67:185–195PubMedPubMedCentralGoogle Scholar
  329. Shinder V, Devor M (1994) Structural basis of neuron-to-neuron cross-excitation in dorsal root ganglia. J Neurocytol 23:515–531PubMedPubMedCentralGoogle Scholar
  330. Shinder V, Govrin-Lippmann R, Cohen S, Belenky M, Ilin P, Fried K, Wilkinson H, Devor M (1999) Structural basis of sympathetic-sensory coupling in rat and human dorsal root ganglia following peripheral nerve injury. J Neurocytol 28:743–761PubMedPubMedCentralGoogle Scholar
  331. Shoji Y, Yamaguchi-Yamada M, Yamamoto Y (2010) Glutamate- and GABA-mediated neuron-satellite cell interaction in nodose ganglia as revealed by intracellular calcium imaging. Histochem Cell Biol 134:13–22PubMedPubMedCentralGoogle Scholar
  332. Sjögreen B, Wiklund P, Ekström PAR (2000) Mitogen activated protein kinase inhibition by PD98059 blocks nerve growth factor stimulated axonal outgrowth from adult mouse dorsal root ganglia in vitro. Neuroscience 100:407–416PubMedPubMedCentralGoogle Scholar
  333. Skoglund S (1967) On the possible postnatal formation of new nerve fibres in the dorsal roots from new nerve cells in the ganglia. An autoradiographic study with H3-thymidine in the cat. Acta Soc Med Upsalien 72:25–29Google Scholar
  334. Spataro LE, Sloane LM, Milligan ED, Wieseler-Frank J, Schoeniger D, Jekich BM, Barrientos RM, Maier SF, Watkins LR (2004) Spinal gap junctions: potential involvement in pain facilitation. J Pain 5:392–405PubMedPubMedCentralGoogle Scholar
  335. Spencer PS, Peterson ER, Madrid RA, Raine CS (1973) Effects of thallium salts on neuronal mitochondria in organotypic cord-ganglia-muscle combination cultures. J Cell Biol 58:79–95PubMedPubMedCentralGoogle Scholar
  336. Spoerri PE, Glees P (1974) The effects of dimethylaminoethyl p-chlorophenoxyacetate on spinal ganglia neurons and satellite cells in culture. Mitochondrial changes in the aging neurons. An electron microscope study. Mech Ageing Dev 3:131–155PubMedPubMedCentralGoogle Scholar
  337. Srebro Z (1965) The ultrastructure of gliosomes in the brains of amphibia. J Cell Biol 26:313–322PubMedPubMedCentralGoogle Scholar
  338. Stefansson K, Wollmann RL, Moore BW (1982) Distribution of S-100 protein outside the central nervous system. Brain Res 234:309–317PubMedPubMedCentralGoogle Scholar
  339. Stensaas LJ, Fidone SJ (1977) An ultrastructural study of cat petrosal ganglia: a search for autonomic ganglion cells. Brain Res 124:29–39PubMedPubMedCentralGoogle Scholar
  340. Stephenson JL, Byers MR (1995) GFAP immunoreactivity in trigeminal ganglion satellite cells after tooth injury in rats. Exp Neurol 131:11–22PubMedPubMedCentralGoogle Scholar
  341. Stewart HJS, Rougon G, Dong Z, Dean C, Jessen KR, Mirsky R (1995) TGF-βs upregulate NCAM and L1 expression in cultured Schwann cells, suppress cyclic AMP-induced expression of 04 and galactocerebroside, and are widely expressed in cells of the Schwann cell lineage in vivo. Glia 15:419–436PubMedPubMedCentralGoogle Scholar
  342. Stöhr Ph Jr (1928) Das peripherische Nervensystem. A. Die Anteile des cerebrospinalen Nervensystems. In: von Möllendorf W (Hrsg) Handbuch der mikroskopischen Anatomie des Menschen, Bd 4/1, S 202–264. Springer, BerlinGoogle Scholar
  343. Stramignoni A (1953) Morfologia e struttura dei cosiddetti satelliti perineuronali dei gangli spinali, loro alterazioni cadaveriche e comportamento in alcune condizioni patologiche. Arch Sci Med 78:231–255Google Scholar
  344. Streeter GL (1905) On the histogenesis of spinal ganglia in mammals. Am J Anat 4:XIIIGoogle Scholar
  345. Streeter GL (1912) The development of the nervous system. In: Keibel F, Mall FP (eds) Manual of human embryology, vol 2. Lippincott, Philadelphia, London, pp 1–156Google Scholar
  346. Suadicani SO, Cherkas PS, Zuckerman J, Smith DN, Spray DC, Hanani M (2010) Bidirectional calcium signaling between satellite glial cells and neurons in cultured mouse trigeminal ganglia. Neuron Glia Biol 6:43–51PubMedPubMedCentralGoogle Scholar
  347. Sugimoto T, Takeyama A, Fujita M, Ichikawa H, Takano-Yamamoto T (2001) Peripheral neuroglial death induced by cisplatin administration in newborn rats. Neuroreport 12:137–140PubMedPubMedCentralGoogle Scholar
  348. Sulkin DF, Sulkin NM, Nushan H (1973) Fine structure of sensory ganglia during experimental scurvy. Acta Neuropathol 23:141–151Google Scholar
  349. Sylvia AL, Rosenthal M (1979) Effects of age on brain oxidative metabolism in vivo. Brain Res 165:235–248Google Scholar
  350. Takeda M, Tanimoto T, Kadoi J, Nasu M, Takahashi M, Kitagawa J, Matsumoto S (2007) Enhanced excitability of nociceptive trigeminal ganglion neurons by satellite glial cytokine following peripheral inflammation. Pain 129:155–166Google Scholar
  351. Takeda M, Takahashi M, Matsumoto S (2008) Contribution of activated interleukin receptors in trigeminal ganglion neurons to hyperalgesia via satellite glial interleukin-1β paracrine mechanism. Brain Behav Immun 22:1016–1023Google Scholar
  352. Takeda M, Takahashi M, Nasu M, Matsumoto S (2011) Peripheral inflammation suppresses inward rectifying potassium currents of satellite glial cells in the trigeminal ganglia. Pain 152:2147–2156PubMedPubMedCentralGoogle Scholar
  353. Takeda M, Nasu M, Kanazawa T, Shimazu Y (2015) Activation of GABAB receptors potentiates inward rectifying potassium currents in satellite glial cells from rat trigeminal ganglia: in vivo patch-clamp analysis. Neuroscience 288:51–58Google Scholar
  354. Tata AM, Vilarό MT, Agrati C, Biagioni S, Mengod G, Augusti-Tocco G (1999) Expression of muscarinic m2 receptor mRNA in dorsal root ganglia of neonatal rat. Brain Res 824:63–70Google Scholar
  355. Tennyson VM (1965) Electron microscopic study of the developing neuroblast of the dorsal root ganglion of the rabbit embryo. J Comp Neurol 124:267–318PubMedPubMedCentralGoogle Scholar
  356. Tennyson VM (1970) The fine structure of the developing nervous system. In: Himwich WA (ed) Developmental neurobiology. Thomas, Springfield, pp 47–116Google Scholar
  357. Thippeswamy T, Mckay JS, Morris R, Quinn J, Wong L-F, Murphy D (2005) Glial-mediated neuroprotection: evidence for the protective role of the NO-cGMP pathway via neuron-glial communication in the peripheral nervous system. Glia 49:197–210PubMedPubMedCentralGoogle Scholar
  358. Tischner K, Fischer HA (1975) Uptake of tritium labelled chloroquine into organized cultures of rat spinal ganglia. An electron microscope autoradiographic study. Acta Neuropathol 32:353–357PubMedPubMedCentralGoogle Scholar
  359. Tischner K, Murray MR (1972) The effects of sodium azide on cultures of peripheral nervous system. A. Light and electron microscope study. J Neuropathol Exp Neurol 31:393–410PubMedPubMedCentralGoogle Scholar
  360. Tischner K, Schröder JM (1972) The effects of cadmium chloride on organotypic cultures of rat sensory ganglia. A light and electron microscope study. J Neurol Sci 16:383–399PubMedPubMedCentralGoogle Scholar
  361. Truex RC (1939) Observations on the chicken Gasserian ganglion with special reference to the bipolar neurons. J Comp Neurol 71:473–486Google Scholar
  362. Tuchweber B, Kovacs K, Khandekar JD, Garg BD (1972) Intramitochondrial lamellar formations induced by pregnenolone-16-α-carbonitrile in the hepatocytes of pregnant rats. J Ultrastruct Res 39:456–464PubMedPubMedCentralGoogle Scholar
  363. Unsicker K (1967) Über die Ganglienzellen im Nebennierenmark des Goldhamsters (Mesocricetus auratus). Ein Beitrag zur Frage der peripheren Neurosekretion. Z Zellforsch 76:187–219Google Scholar
  364. Vaegter CB (2014) Neurotrophins and their receptors in satellite glial cells following nerve injury. Neural Regen Res 9:2038–2039PubMedPubMedCentralGoogle Scholar
  365. Valentin G (1836) Über den Verlauf und die letzten Enden der Nerven. Verhandlungen der Kaiserlichen Leopoldinisch-Carolinischen Akademie der Naturforscher 18:51–240Google Scholar
  366. Valentin G (1839) Über die Scheiden der Ganglienkugeln und deren Fortsetzungen. Arch Anat Physiol Wiss Med 139–164Google Scholar
  367. van den Bosch de Aguilar P, Vanneste J (1983) The microenvironment of the spinal ganglion neuron in the rat during aging. Exp Neurol 81:294–307Google Scholar
  368. Van Gehuchten A (1892) Nouvelles recherches sur les ganglions cérébro-spinaux. La Cellule 8:233–253Google Scholar
  369. Varon S (1976) Glia, nerve growth factor and ganglionic metabolism. In: Ahtee L (ed) Neurotransmission. Pergamon, Oxford, pp 275–284Google Scholar
  370. Varon S, Raiborn C (1972) Dissociation, fractionation and culture of chick embryo sympathetic ganglionic cells. J Neurocytol 1:211–221Google Scholar
  371. Varon S, Raiborn C, Tyszka E (1973) In vitro studies of dissociated cells from newborn mouse dorsal root ganglia. Brain Res 54:51–63Google Scholar
  372. Varon S, Raiborn C, Burnham P (1974) Comparative effects of nerve growth factor and ganglionic nonneuronal cells on purified mouse ganglionic neurons in culture. J Neurobiol 5:355–371Google Scholar
  373. Vause CV, Durham PL (2010) Calcitonin gene-related peptide differentially regulates gene and protein expression in trigeminal glia cells: findings from array analysis. Neurosci Lett 473:163–167PubMedPubMedCentralGoogle Scholar
  374. Vega JA, Rodriguez C, Medina M, del Valle-Soto ME, Hernandez LC (1989) Expression of cytoskeletal proteins in glial cells of dorsal root ganglia. Cell Mol Biol 35:635–641Google Scholar
  375. Verbavatz J-M, Ma T, Gobin R, Verkman AS (1997) Absence of orthogonal arrays in kidney, brain and muscle from transgenic knockout mice lacking water channel aquaporin-4. J Cell Sci 110:2855–2860Google Scholar
  376. Vesin M-F, Urade Y, Hayaishi O, Droz B (1995) Neuronal and glial prostaglandin D synthase isozymes in chick dorsal root ganglia: a light and electron microscopic immunocytochemical study. J Neurosci 15:470–476Google Scholar
  377. Vit J-P, Jasmin L, Bhargava A, Ohara PT (2006) Satellite glial cells in the trigeminal ganglion as a determinant of orofacial neuropathic pain. Neuron Glia Biol 2:247–257PubMedPubMedCentralGoogle Scholar
  378. Vit J-P, Ohara PT, Bhargava A, Kelley K, Jasmin L (2008) Silencing the Kir4.1 potassium channel subunit in satellite glial cells of the rat trigeminal ganglion results in pain-like behavior in the absence of nerve injury. J Neurosci 28:4161–4171PubMedPubMedCentralGoogle Scholar
  379. Wagner R (1846) Sympathischer Nerv, Ganglienstructur und Nervenendigungen. In: Wagner R (Hrsg) Handwörterbuch der Physiologie 3/I. Vieweg, Braunschweig, S 360–406Google Scholar
  380. Wakisaka H, Kobayashi N, Mominoki K, Saito S, Honda N, Hato N, Gyo K, Matsuda S (2001) Herpes simplex virus in the vestibular ganglion and the geniculate ganglion—role of loose myelin. J Neurocytol 30:685–693Google Scholar
  381. Wall PD, Devor M (1983) Sensory afferent impulses originate from dorsal root ganglia as well as from the periphery in normal and nerve injured rats. Pain 17:321–339Google Scholar
  382. Watanabe PG, Sharma RP (1975) Neurotoxicity of organophosphates. Effects of tri-o-tolyl phosphate in chick ganglia cell cultures. J Comp Pathol 85:373–381Google Scholar
  383. Waxman SG, Dichter MA, Hartwieg EA, Matheson JK (1977) Recapitulation of normal neuro-glial relation in dissociated cell cultures of dorsal root ganglia. Brain Res 122:344–350Google Scholar
  384. Weick M, Cherkas PS, Härtig W, Pannicke T, Uckermann O, Bringmann A, Tal M, Reichenbach A, Hanani M (2003) P2 receptors in satellite glial cells in trigeminal ganglia of mice. Neuroscience 120:969–977Google Scholar
  385. Weis P (1971) The in vitro effect of the nerve growth factor on chick embryo spinal ganglia: an electron microscopic evaluation. J Comp Neurol 141:117–132Google Scholar
  386. Wen JYM, Morshead CM, van der Kooy D (1994) Satellite cell proliferation in the adult rat trigeminal ganglion results from the release of a mitogenic protein from explanted sensory neurons. J Cell Biol 124:1005–1015Google Scholar
  387. Werner MH, Nanney LB, Stoscheck CM, King LE (1988) Localization of immunoreactive epidermal growth factor receptors in human nervous system. J Histochem Cytochem 36:81–86Google Scholar
  388. Wetmore C, Olson L (1995) Neuronal and nonneuronal expression of neurotrophins and their receptors in sensory and sympathetic ganglia suggest new intercellular trophic interactions. J Comp Neurol 353:143–159Google Scholar
  389. Whetsell WO Jr, Bunge RP (1969) Reversible alterations in the Golgi complex of cultured neurons treated with an inhibitor of active Na and K transport. J Cell Biol 42:490–500PubMedPubMedCentralGoogle Scholar
  390. Whetsell WO Jr, Schwartz J, Elizan TS (1977) Comparative effects of herpes simplex virus types 1 and 2 in organotypic cultures of mouse dorsal root ganglion. J Neuropathol Exp Neurol 36:547–560Google Scholar
  391. Wilkinson R, Leaver C, Simmons A, Pereira RA (1999) Restricted replication of herpes simplex virus in satellite glial cell cultures clonally derived from adult mice. J Neuro Virol 5:384–391Google Scholar
  392. Woodham P, Anderson PN, Nadim W, Turmaine M (1989) Satellite cells surrounding axotomised rat dorsal root ganglion cells increase expression of a GFAP-like protein. Neurosci Lett 98:8–12Google Scholar
  393. Woodhoo A, Dean CH, Droggiti A, Mirsky R, Jessen KR (2004) The trunk neural crest and its early glial derivatives: a study of survival responses, developmental schedules and autocrine mechanisms. Mol Cell Neurosci 25:30–41PubMedPubMedCentralGoogle Scholar
  394. Wu H-H, Bellmunt E, Scheib JL, Venegas V, Burkert C, Reichardt LF, Zhou Z, Fariñas I, Carter BD (2009) Glial precursors clear sensory neuron corpses during development via Jedi-1, an engulfment receptor. Nat Neurosci 12:1534–1541PubMedPubMedCentralGoogle Scholar
  395. Wyburn GM (1958) The capsule of spinal ganglion cells. J Anat 92:528–533PubMedPubMedCentralGoogle Scholar
  396. Xian CJ, Zhou X-F (1999) Neuronal-glial differential expression of TGF-α and its receptor in the dorsal root ganglia in response to sciatic nerve lesion. Exp Neurol 157:317–326PubMedPubMedCentralGoogle Scholar
  397. Yamadori T (1970) A light and electron microscopic study on the postnatal development of spinal ganglia in rats. Acta Anat Nippon 45:191–205PubMedPubMedCentralGoogle Scholar
  398. Yamamoto M, Fan L, Wakayama T, Amano O, Iseki S (2001) Constitutive expression of the 27-kDa heat-shock protein in neurons and satellite cells in the peripheral nervous system of the rat. Anat Rec 262:213–220PubMedPubMedCentralGoogle Scholar
  399. Yamashita N, Sakai K, Furuya S, Watanabe M (2003) Selective expression of L-serine synthetic enzyme 3PGDH in Schwann cells, perineuronal glia, and endoneurial fibroblasts along rat sciatic nerves and its upregulation after crush injury. Arch Histol Cytol 66:429–436PubMedPubMedCentralGoogle Scholar
  400. Yarygin KN, Doronin PP, Rodionov IM, Yarygin VN, Giber LM (1976) The study of neurons and glial cells in sympathetic ganglia in mice of different age. III. A study of perikaryal satellite cells in normal animals and in mice with sharply reduced number of ganglionic neurons (Russian text). Tsitologiia 18:944–949Google Scholar
  401. Yates RD (1961) A study of cell division in chick embryonic ganglia. J Exp Zool 147:167–181PubMedPubMedCentralGoogle Scholar
  402. Yntema CL (1937) An experimental study of the origin of the cells which constitute the VIIth and VIIIth cranial ganglia and nerves in the embryo of Amblystoma punctatum. J Exp Zool 75:75–101Google Scholar
  403. Yntema CL (1943) An experimental study on the origin of the sensory neurones and sheath cells of the IXth and Xth cranial nerves in Amblystoma punctatum. J Exp Zool 92:93–119Google Scholar
  404. Yonezawa T, Iwanami H (1966) An experimental study of thiamine deficiency in nervous tissue, using tissue culture technics. J Neuropathol Exp Neurol 25:362–372PubMedPubMedCentralGoogle Scholar
  405. Yonezawa T, Mori T, Nakatani Y (1969) Effects of pyridoxine deficiency in nervous tissue maintained in vitro. Ann N Y Acad Sci 166:146–157PubMedPubMedCentralGoogle Scholar
  406. Young JAC, Brown DA, Kelly JS, Schon F (1973) Autoradiographic localization of sites of [3H] γ aminobutyric acid accumulation in peripheral autonomic ganglia. Brain Res 63:479–486PubMedPubMedCentralGoogle Scholar
  407. Zerboni L, Arvin A (2015) Neuronal subtype and satellite cell tropism are determinants of varicella-zoster virus virulence in human dorsal root ganglia xenografts in vivo. PLoS Pathog 11:e1004989PubMedPubMedCentralGoogle Scholar
  408. Zhang J-M, Donnelly DF, Song X-J, LaMotte RH (1997) Axotomy increases the excitability of dorsal root ganglion cells with unmyelinated axons. J Neurophysiol 78:2790–2794PubMedPubMedCentralGoogle Scholar
  409. Zhang Y, Roslan R, Lang D, Schachner M, Lieberman AR, Anderson PN (2000) Expression of CHL1 and L1 by neurons and glia following sciatic nerve and dorsal root injury. Mol Cell Neurosci 16:71–86PubMedPubMedCentralGoogle Scholar
  410. Zhang X-F, Han P, Faltynek CR, Jarvis MF, Shieh C-C (2005) Functional expression of P2X7 receptors in non-neuronal cells of rat dorsal root ganglia. Brain Res 1052:63–70PubMedPubMedCentralGoogle Scholar
  411. Zhang X, Chen Y, Wang C, Huang L-YM (2007) Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia. Proc Natl Acad Sci U S A 104:9864–9869PubMedPubMedCentralGoogle Scholar
  412. Zhang H, Mei X, Zhang P, Ma C, White FA, Donnelly DF, LaMotte RH (2009) Altered functional properties of satellite glial cells in compressed spinal ganglia. Glia 57:1588–1599PubMedPubMedCentralGoogle Scholar
  413. Zhou X-F, Rush RA, McLachlan EM (1996) Differential expression of the p75 nerve growth factor receptor in glia and neurons of the rat dorsal root ganglia after peripheral nerve transection. J Neurosci 16:2901–2911PubMedPubMedCentralGoogle Scholar
  414. Zhou X-F, Deng Y-S, Chie E, Xue Q, Zhong J-H, McLachlan EM, Rush RA, Xian CJ (1999) Satellite-cell-derived nerve growth factor and neurotrophin-3 are involved in noradrenergic sprouting in the dorsal root ganglia following peripheral nerve injury in the rat. Eur J Neurosci 11:1711–1722PubMedPubMedCentralGoogle Scholar
  415. Ziegler RJ, Herman RE (1980) Peripheral infection in culture of rat sensory neurons by herpes simplex virus. Infect Immun 28:620–623PubMedPubMedCentralGoogle Scholar
  416. Ziegler RJ, Pozos RS (1977) Ultrastructural effects of herpes simplex virus type 2 infection of rat dorsal root ganglia in culture. J Neuropathol Exp Neurol 36:680–692PubMedPubMedCentralGoogle Scholar
  417. Zimmerman E, Karsh D, Humbertson A Jr (1971) Initiating factors in perineuronal cell hyperplasia associated with chromatolytic neurons. Z Zellforsch 114:73–82PubMedPubMedCentralGoogle Scholar
  418. Zimmermann A, Sutter A (1983) β-Nerve growth factor (βNGF) receptors on glial cells. Cell-cell interaction between neurones and Schwann cells in cultures of chick sensory ganglia. EMBO J 2:879–885PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ennio Pannese
    • 1
  1. 1.University of MilanMilanItaly

Personalised recommendations