Advertisement

Public Transit Route Planning Through Lightweight Linked Data Interfaces

  • Pieter ColpaertEmail author
  • Ruben Verborgh
  • Erik Mannens
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10360)

Abstract

While some public transit data publishers only provide a data dump – which only few reusers can afford to integrate within their applications – others provide a use case limiting origin-destination route planning api. The Linked Connections framework instead introduces a hypermedia api, over which the extendable base route planning algorithm “Connections Scan Algorithm” can be implemented. We compare the cpu usage and query execution time of a traditional server-side route planner with the cpu time and query execution time of a Linked Connections interface by evaluating query mixes with increasing load. We found that, at the expense of a higher bandwidth consumption, more queries can be answered using the same hardware with the Linked Connections server interface than with an origin-destination api, thanks to an average cache hit rate of 78%. The findings from this research show a cost-efficient way of publishing transport data that can bring federated public transit route planning at the fingertips of anyone.

Keywords

Linked data Public transport Route planning Open data 

References

  1. 1.
    Bast, H., Carlsson, E., Eigenwillig, A., Geisberger, R., Harrelson, C., Raychev, V., Viger, F.: Fast routing in very large public transportation networks using transfer patterns. In: Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 290–301. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15775-2_25 CrossRefGoogle Scholar
  2. 2.
    Colpaert, P., Ballieu, S., Verborgh, R., Mannens, E.: The impact of an extra feature on the scalability of linked connections. In: COLD Workshop at ISWC2016 (2016)Google Scholar
  3. 3.
    Colpaert, P., Chua, A., Verborgh, R., Mannens, E., Van de Walle, R., Vande Moere, A.: What public transit API logs tell us about travel flows. In: WWW 2016: 25th International World Wide Web Conference (2016)Google Scholar
  4. 4.
    Colpaert, P., Llaves, A., Verborgh, R., Corcho, O., Mannens, E., Van de Walle, R.: Intermodal public transit routing using linked connections. In: Proceedings of the 14th International Semantic Web Conference: Posters and Demos, October 2015Google Scholar
  5. 5.
    Delling, D., Pajor, T., Werneck, R.F.F.: Round-based public transit routing. In: Proceedings of the 14th Meeting on Algorithm Engineering and Experiments (ALENEX 2012) (2012)Google Scholar
  6. 6.
    Dibbelt, J., Pajor, T., Strasser, B., Wagner, D.: Intriguingly simple and fast transit routing. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 43–54. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38527-8_6 CrossRefGoogle Scholar
  7. 7.
    Folz, P., Skaf-Molli, H., Molli, P.: CyCLaDEs: a decentralized cache for triple pattern fragments. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 455–469. Springer, Cham (2016). doi: 10.1007/978-3-319-34129-3_28 CrossRefGoogle Scholar
  8. 8.
    Quercia, D., Schifanella, R., Aiello, L.M.: The shortest path to happiness: recommending beautiful, quiet, and happy routes in the city. In: Proceedings of the 25th ACM Conference on Hypertext and social Media, pp. 116–125. ACM (2014)Google Scholar
  9. 9.
    Strasser, B., Wagner, D.: Connection scan accelerated. In: Proceedings of the Meeting on Algorithm Engineering & Expermiments, pp. 125–137. Society for Industrial and Applied Mathematics (2014)Google Scholar
  10. 10.
    Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L., De Meester, B., Haesendonck, G., Colpaert, P.: Triple pattern fragments: a low-cost knowledge graph interface for the Web. J. Web Semant. 37, 184–206 (2016)CrossRefGoogle Scholar
  11. 11.
    Witt, S.: Trip-based public transit routing. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 1025–1036. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48350-3_85 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Ghent University – imec – Internet and Data LabGhentBelgium

Personalised recommendations