Skip to main content

Metric Geometries in an Axiomatic Perspective

  • Chapter
  • First Online:
From Riemann to Differential Geometry and Relativity

Abstract

In his 1854 Habilitationsvortrag Riemann presented a new concept of space endowed with a metric of great generality, which, through specification of the metric, gave rise to the spaces of constant curvature. In a different vein, yet with a similar aim, J. Hjelmslev, A. Schmidt, and F. Bachmann, introduced axiomatically a very general notion of plane geometry, which provides the foundation for the elementary versions of the geometries of spaces of constant curvature. We present a survey of these absolute geometric structures and their first-order axiomatizations, as well as of higher-dimensional variants thereof. In the 2-dimensional case, these structures were called metric planes by F. Bachmann, and they can be seen as the common substratum for the classical plane geometries: Euclidean, hyperbolic, and elliptic. They are endowed with a very general notion of orthogonality or reflection that can be specialized into that of the classical geometries by means of additional axioms. By looking at all the possible ways in which orthogonality can be introduced in terms of polarities, defined on (the intervals of a chain of subspaces of) projective spaces, one obtains a further generalization: the Cayley-Klein geometries. We present a survey of projective spaces endowed with an orthogonality and the associated Cayley-Klein geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “As is well known, geometry assumes as given both the notion of space and the fundamental notions for constructions in space. If offers merely nominal definitions for these notions, whereas the essential determinations appear in the form of axioms. In the process, the relation between these assumptions remains obscure; we neither realize whether and to what extent their association is necessary, nor a priori, whether it is possible.” (all translations are by V. Pambuccian).

  2. 2.

    The question of the validity of the hypotheses of geometry in the infinitely small is connected with the question of the intrinsic reasons for the metric relations of space. It is in this last question, which may still be regarded as belonging to the doctrine of space, that the remark made above finds its application, viz. that in the case of a discrete manifold, the principle of its metric relations are already contained in the very notion of this manifold, whereas in the case of a continuous manifold, this principle must come from somewhere else. Thus either the underlying reality of space must form a discrete manifold, or else we must seek the reason for its metric relations outside it, in binding forces acting upon it.

  3. 3.

    See [111, 2.2.10] for more on the influence of Herbart.

  4. 4.

    A homogeneous continuum, that would allow indefinite divisibility and would thus achieve the infinitely small, cannot be encountered anywhere in nature. The infinite divisibility of the continuum is an operation existing only in thought, only an idea, which is refuted by our observations of nature and by the experience drawn from physics and chemistry.

  5. 5.

    Die Untersuchungen von Riemann und Helmholtz über die Grundlagen der Geometrie.

  6. 6.

    To treat any question that might arise in a manner which also allowed us to check whether its answer is possible by a different route with certain restricted means.

  7. 7.

    Throughout this paper metric will always refer to a structure with an orthogonality relation or in which one such relation can be defined. It is in no way related to metrics defined as distances with real values.

  8. 8.

    “bahnt eine bequeme Straße durch ...[das] Urwaldgestrüpp der Lobatschefskijschen Rechnungen” [42, p. 277].

  9. 9.

    In the sense that there are no boundaries to a line, that one can travel along one without ever reaching anything remotely resembling an end, or, in Euclid’s own formulation, in Postulate 2 of Book I of the Elements, it is always possible “To produce a finite straight line continuously in a straight line.”.

  10. 10.

    When space-constructions are extended toward the unmeasurably large, one must distinguish between unboundedness and infinitude; the former belongs to the realm of extension, the latter to the that of measure.

  11. 11.

    “stellen sich vom logischen Standpunkte aus gleichberechtigt neben die euklidische Geometrie” [42, p. 164].

  12. 12.

    “da sie zum Teil nicht für Messungen in der Außenwelt verwendbar sind.” [42, p. 164].

  13. 13.

    Russell’s question is rhetorical in nature. He answers it on the next page, pointing out that the work of von Staudt, with its introduction of coordinates in a metric-free manner, removes all doubts regarding the independence of projective coordinates from distances.

  14. 14.

    The axiom system inside group theory can be found, with \(n=2\), in Sect. 3.

  15. 15.

    In [7, p. 339] one finds the only known algebraic characterization and in [7, Satz 1 on p. 286] a geometric characterization of these point-sets. Both are far from the specificity obtained in the actual solution of the Umkehrproblem for restricted classes of metric planes.

  16. 16.

    This kind of “concurrence” of three lines will be referred to as “the three lines lie in a pencil”.

  17. 17.

    A different axiomatization for the geometry obtained by adding \(\mathbf{E}_3\) has been provided in [74].

  18. 18.

    i.e., the elements \((\alpha \vee \varepsilon _k) \wedge \varepsilon _{k+1}\) and \((\beta \vee \varepsilon _k) \wedge \varepsilon _{k+1}\) (if \(\wedge \) and \(\vee \) denote the lattice operations).

  19. 19.

    This concept of a dilatation generalizes the notion of a dilatation which is given in incidence geometry (as a transformation which preserves direction) and in similarity geometry (as a transformation which preserves circles resp. the angular measure).

  20. 20.

    cp. Klein [42], Bachmann [7], Klopsch [44], Hessenberg and Diller [32] and Karzel and Kroll [38].

  21. 21.

    According to Sylvester’s law of inertia all maximal positive definite subspaces of a (real) quadratic space V, i.e., of a vector space endowed with a quadratic form, have the same dimension, which is called the signature of the quadratic space (the term “signature” is used in the literature in different ways; we follow Snapper and Troyer [99]). The signature of a subspace U of V is the signature of U with respect of the restriction of the quadratic form of V to U, see [108].

  22. 22.

    or more precisely a non-doubly hyperbolic Cayley-Klein group.

  23. 23.

    We recall from Sect. 3: Elements \(a, b, c, \ldots \) of S are called lines and elements \(A, B, C, \ldots \) of P points. The “stroke relation” \(\alpha \! \mid \! \beta \) is an abbreviation for the statement that \(\alpha , \beta \) and \(\alpha \beta \) are involutory elements (i.e., group elements of order 2). The statement \(\alpha , \beta \mid \delta \) is an abbreviation of \(\alpha \! \mid \! \delta \) and \(\beta \! \mid \! \delta \). A point A and a line b are incident if \(A \! \mid \! b\). Lines \(a, b \in S\) are orthogonal if \(a \! \mid \! b \). A quadrangle is a set of four points ABCD and four lines abcd with \(a \mid A, B\) and \(b \mid B, C\) and \(c \mid C, D\) and \(d \mid D, A\).

References

  1. J. Ahrens, Begründung der absoluten Geometrie des Raumes aus dem Spiegelungsbegriff. Math. Z. 71, 154–185 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Bachmann, Eine Begründung der absoluten Geometrie in der Ebene. Math. Ann. 113, 424–451 (1936)

    Article  MATH  Google Scholar 

  3. F. Bachmann, Geometrien mit euklidischer Metrik, in denen es zu jeder Geraden durch einen nicht auf ihr liegenden Punkt mehrere Nichtschneidende gibt. I, II, III. Math. Z. 51 (1949), 752–768, 769–779, Math. Nachr. 1, 258–276 (1948)

    Google Scholar 

  4. F. Bachmann, Zur Begründung der Geometrie aus dem Spiegelungsbegriff. Math. Ann. 123, 341–344 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Bachmann, Zur Parallelenfrage. Abh. Math. Semin. Univ. Hamburg 27, 173–192 (1964)

    Google Scholar 

  6. F. Bachmann, Der Höhensatz in der Geometrie involutorischer Gruppenelemente. Can. J. Math. 19, 895–903 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Bachmann, Aufbau der Geometrie aus dem Spiegelungsbegriff. Zweite ergänzte Auflage (Springer-Verlag, Berlin, 1973)

    Google Scholar 

  8. F. Bachmann, Ebene Spiegelungsgeometrie Eine Vorlesung über Hjelmslev-Gruppen (BI-Wissenschaftsverlag, Mannheim, 1989)

    Google Scholar 

  9. O. Bachmann, Zur spiegelungsgeometrischen Begründung von Geometrien. Geom. Dedicata 5, 497–516 (1976)

    Article  MATH  Google Scholar 

  10. R. Baer, The group of motions of a two dimensional elliptic geometry. Compositio Math. 9, 241–288 (1951)

    MathSciNet  MATH  Google Scholar 

  11. L. Boi, L’espace: concept abstrait et/ou physique; la géométrie entre formalisation mathématique et étude de la nature. L. Boi, D. Flament, J.-M. Salanskis (eds.), 1830–1930: A century of geometry (Paris, 1989), 65–90, Springer, Berlin, 1992

    Google Scholar 

  12. L. Boi, Die Beziehungen zwischen Raum, Kontinuum und Materie im Denken Riemanns; die Äthervorstellung und die Einheit der Physik. Das Entstehen einer neuen Naturphilosophie. Philos. Natur. 31 (1994), 171–216

    Google Scholar 

  13. L. Boi, Le concept de variété et la nouvelle géométrie de l’espace dans la pensée de Bernhard Riemann: l’émergence d’une nouvelle vision des mathématiques et de ses rapports avec les sciences fondamentales. Arch. Internat. Hist. Sci. 45(134), 82–128 (1995)

    Google Scholar 

  14. L. Boi, Le problème mathématique de l’espace (Springer-Verlag, Berlin, 1995)

    Google Scholar 

  15. A. Cayley, A sixth memoir upon quantics. Philos. Trans. R. Soc. Lond. 149, 61–90 (1859) (also Collected Mathematical Papers, Vol. 2, pp. 561–592, Cambridge University Press, Cambridge 1889)

    Google Scholar 

  16. M. Dehn, Die Legendre’schen Sätze über die Winkelsumme im Dreieck. Math. Ann. 53, 404–439 (1900)

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Diller, Eine algebraische Beschreibung der metrischen Ebenen mit ineinander beweglichen Geraden. Abh. Math. Semin. Univ. Hamburg 34, 184–202 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Eklund, On how logic became first-order. Nordic J. Philos. Logic 1, 147–167 (1996)

    MathSciNet  MATH  Google Scholar 

  19. G. Ewald, Spiegelungsgeometrische Kennzeichnung euklidischer und nichteuklidischer Räume beliebiger Dimension. Abh. Math. Sem. Univ. Hamburg 41, 224–251 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Ferreirós, The road to modern logic–an interpretation. Bull. Symb. Logic 7, 441–484 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Ferreirós, Riemann’s Habilitationsvortrag at the crossroads of mathematics, physics, and philosophy, in The Architecture of Modern Mathematics, ed. by J. Ferreirós, J.J. Gray (Oxford University Press, Oxford, 2006), pp. 67–96

    Google Scholar 

  22. H.R. Friedlein, Generalizacion de snail maps a geometrias metricas de cualquier dimension, e immersion de estas geometrias. Gac. Mat. (Madrid) 29(1–2), 10–21 (1977)

    MathSciNet  Google Scholar 

  23. H.R. Friedlein, E.S. Saez, Immersion de una geometria metrica en una geometria proyectiva. Gac. Mat. (Madrid) 29(3–4), 53–60 (1977)

    Google Scholar 

  24. H.-R. Friedlein, Elliptische Bewegungsgruppen und orthogonale Gruppen vom Index \(0\). Abh. Math. Sem. Univ. Hamburg 49, 140–154 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. H.-R. Friedlein, Über das Zentrum metrischer Bewegungsgruppen nach Ewald. J. Geom. 22, 153–157 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Gandon, Russell’s Unknown Logicism, A study in the history and philosophy of mathematics (Palgrave Macmillan, Basingstoke, 2012)

    Google Scholar 

  27. M. Grochowska, Euclidean two dimensional equidistance theory. Demonstratio Math. 17, 593–607 (1984)

    MathSciNet  MATH  Google Scholar 

  28. G. Heimbeck, Zur gruppentheoretischen Kennzeichnung elliptischer Bewegungsgruppen. Arch. Math. (Basel) 28, 374–377 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Heimbeck, Zum Aufbau der absoluten Geometrie nach Ewald. Abh. Math. Sem. Univ. Hamburg 50, 70–88 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Hellwig, Modelle der absoluten Geometrie. Dissertation, Universität Kiel, Kiel, 1991

    Google Scholar 

  31. G. Hessenberg, Neue Begründung der Sphärik. S.-Ber. Berlin. Math. Ges. 4, 69–77 (1905)

    MATH  Google Scholar 

  32. G. Hessenberg, J. Diller, Grundlagen der Geometrie, 2nd edn. (Walter de Gruyter, Berlin, 1967)

    MATH  Google Scholar 

  33. D. Hilbert, Neue Begründung der Bolyai-Lobatschefskyschen Geometrie. Math. Ann. 57, 137–150 (1903)

    Article  MathSciNet  MATH  Google Scholar 

  34. D. Hilbert, Grundlagen der Geometrie (Leipzig, Teubner,1899) (translated by L. Unger, Open Court, La Salle, Ill., under the title: Foundations of Geometry, 1971)

    Google Scholar 

  35. D. Hilbert, David Hilbert’s lectures on the foundations of arithmetic and logic, 1917–1933, eds. by W. Ewald, W. Sieg (Springer, Berlin, 2013) (Collaboration with U. Majer, D. Schlimm)

    Google Scholar 

  36. J. Hjelmslev, Neue Begründung der ebenen Geometrie. Math. Ann. 64, 449–474 (1907)

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Hjelmslev, Einleitung in die allgemeine Kongruenzlehre. I, II., Mat.-Fys. Medd. K. Dan. Vidensk. Selsk. 8, Nr. 11, 1–36; 10 (1929). Nr. 1, 1–28 (1929)

    Google Scholar 

  38. H. Karzel, H.-J. Kroll, Geschichte der Geometrie seit Hilbert (Wissenschaftliche Buchgesellschaft, Darmstadt, 1988)

    MATH  Google Scholar 

  39. G. Hübner, Klassifikation \(n\)-dimensionaler absoluter Geometrien. Abh. Math. Semin. Univ. Hamburg 33, 165–182 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  40. H. Kinder, Begründung der \(n\) -dimensionalen absoluten Geometrie aus dem Spiegelungsbegriff. Dissertation, Christian-Albrechts-Universität zu Kiel, Kiel, 1965

    Google Scholar 

  41. H. Kinder, Elliptische Geometrie endlicher Dimension. Arch. Math. (Basel) 21, 515–527 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  42. F. Klein, Vorlesungen über nicht-euklidische Geometrie (Springer, Berlin, 1928)

    MATH  Google Scholar 

  43. W. Klingenberg, Eine Begründung der hyperbolischen Geometrie. Math. Ann. 127, 340–356 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  44. P. Klopsch, Algebraische Kennzeichnung angeordneter Bachmann-Räume. Geom. Dedicata 18, 249–259 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  45. F. Knüppel, Reflection groups—On pre-Hjelmslev groups and related topics, in Generators and Relations in Groups and Geometries, eds. by A. Barlotti, E.W. Ellers, P. Plaumann, K. Strambach (Kluwer, Dordrecht, 1991), pp. 125–164

    Google Scholar 

  46. T. Kouremenos, The Unity of Mathematics in Plato’s Republic (Franz Steiner Verlag, Stuttgart, 2015)

    MATH  Google Scholar 

  47. H. Lenz, Inzidenzräume mit Orthogonalität. Math. Ann. 146, 369–374 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  48. R. Lingenberg, Metric Planes and Metric Vector Spaces (Wiley, New York, 1979)

    MATH  Google Scholar 

  49. H. Maehara, The problem of thirteen spheres–a proof for undergraduates. Eur. J. Combin. 28, 1770–1778 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. K. Menger, Bemerkungen zu Grundlagenfragen. Jahresber. Deutsch. Math.-Verein. 37, 309–325 (1928)

    MATH  Google Scholar 

  51. K. Menger, New foundations of affine and projective geometry. Ann. Math. 37, 456–482 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  52. H. Müller, Zur Begründung der ebenen absoluten Geometrie aus Bewegungsaxiomen. Dissertation, Technische Hochschule München, München 1966

    Google Scholar 

  53. J. von Neumann, Continuos geometry. Proc. Natl. Acad. Sci. USA 22, 92–100 (1936)

    Article  Google Scholar 

  54. G. Nowak, Riemann’s Habilitationsvortrag and the synthetic a priori status of geometry, in The History of Modern Mathematics, vol. I, ed. by D.E. Rowe, J. McCleary (Academic Press, Boston, MA, 1989), pp. 17–46

    Google Scholar 

  55. W. Nolte, Zur Begründung der absoluten Geometrie des Raumes. Math. Z. 94, 32–60 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  56. W. Nolte, Metrische Räume mit dreiseitverbindbaren Teilräumen. I, II. J. Geom. 4, 53–90, 91–117 (1974)

    Google Scholar 

  57. V. Pambuccian, Ternary operations as primitive notions for constructive plane geometry IV. Math. Log. Q. 40, 76–86 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  58. V. Pambuccian, Zum Stufenaufbau des Parallelenaxioms. J. Geom. 51, 79–88 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  59. V. Pambuccian, Ternary operations as primitive notions for constructive plane geometry V. Math. Log. Q. 40, 455–477 (1994)

    Google Scholar 

  60. V. Pambuccian, Fragments of Euclidean and hyperbolic geometry. Sci. Math. Jpn. 53, 361–400 (2001)

    MathSciNet  MATH  Google Scholar 

  61. V. Pambuccian, Constructive axiomatization of non-elliptic metric planes. Bull. Polish Acad. Sci. Math. 51, 49–57 (2003)

    MathSciNet  MATH  Google Scholar 

  62. V. Pambuccian, Review of R. Hartshorne, Geometry: Euclid and beyond. (2000) (Springer, New York) Am. Math. Mon. 110, 66–70 (2003)

    Google Scholar 

  63. V. Pambuccian, Groups and plane geometry. Studia Logica 81, 387–398 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  64. V. Pambuccian, Orthogonality as single primitive notion for metric planes. With an appendix by H. and R. Struve. Beiträge Algebra Geom. 48, 399–409 (2007)

    Google Scholar 

  65. V. Pambuccian, The Erdős-Mordell inequality is equivalent to non-positive curvature. J. Geom. 88, 134–139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  66. V. Pambuccian, R. Struve, On M.T. Calapso’s characterization of the metric of an absolute plane. J. Geom. 92, 105–116 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  67. V. Pambuccian, The axiomatics of ordered geometry I. Ordered incidence spaces. Expo. Math. 29, 24–66 (2011)

    Google Scholar 

  68. V. Pambuccian, Essay review of David Hilbert’s lectures on the foundations of geometry, 1891–1902, eds. by M. Hallett, U. Majer (Springer-Verlag, Berlin, 2004). Philos. Math. (III) 21, 255–277 (2013)

    Google Scholar 

  69. V. Pambuccian, H. Struve, R. Struve, The Steiner-Lehmus theorem and "triangles with congruent medians are isosceles" hold in weak geometries. Beiträge Algebra Geom. 57, 483–497 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  70. D. Pedoe, The most “elementary” theorem of Euclidean geometry. Math. Mag. 49, 40–42 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  71. W. Pejas, Die Modelle des Hilbertschen Axiomensystems der absoluten Geometrie. Math. Ann. 143, 212–235 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  72. W. Pejas, Eine algebraische Beschreibung der angeordneten Ebenen mit nichteuklidischer Metrik. Math. Z. 83, 434–457 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  73. E. Podehl, K. Reidemeister, Eine Begründung der ebenen elliptischen Geometrie. Abh. Math. Sem. Univ. Hamburg 10, 231–255 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  74. G. Richter, R. Schnabel, Euklidische Räume. J. Geom. 58, 164–178 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  75. B. Rosenfeld, Geometry of Lie Groups (Kluwer, Dordrecht, 1997)

    Book  MATH  Google Scholar 

  76. C. Rovelli, Quantum Gravity (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  77. B. Russell, Foundations of Geometry (with an foreword of M. Kline) (Dover, New York, 1956) (first edition 1897)

    Google Scholar 

  78. E. Salow, Singuläre Hjelmslev-Gruppen. Geom. Dedicata 1, 447–467 (1973)

    Google Scholar 

  79. H. Scherf, Begründing der hyperbolischen Geometrie des Raumes. Dissertation, Christian-Albrechts-Universität zu Kiel, Kiel, 1961

    Google Scholar 

  80. A. Schmidt, Die Dualität von Inzidenz und Senkrechtstehen in der absoluten Geometrie. Math. Ann. 118, 609–625 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  81. R. Schnabel, Euklidische Geometrie (Universität Kiel, Kiel, Habilitationsschrift, 1978)

    Google Scholar 

  82. E. Scholz, Geschichte des Mannigfaltigkeitsbegriffs von Riemann bis Poincaré (Mass, Birkhäuser, Boston, 1980)

    MATH  Google Scholar 

  83. E. Scholz, Riemanns frühe Notizen zum Mannigfaltigkeitsbegriff und zu den Grundlagen der Geometrie. Arch. Hist. Exact Sci. 27, 213–232 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  84. E. Scholz, Riemann’s vision of a new approach to geometry, in 1830–1930: A century of geometry (Paris, 1989), eds. by L. Boi, D. Flament, J.-M. Salanskis (Springer, Berlin, 1992), pp. 22–34

    Google Scholar 

  85. E.M. Schröder, Eine Kennzeichnung der regulären euklidischen Geometrien. Abh. Math. Sem. Univ. Hamburg 49, 95–117 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  86. E.M. Schröder, Zur Kennzeichnung Fanoscher affin-metrischer Geometrien. J. Geom. 16, 56–62 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  87. E.M. Schröder, On foundations of metric geometries. In: A. Barlotti, M. Marchi, G. Tallini (eds), Atti del convegno “Geometria combinatoria e di incidenza: fondamenti e applicazioni" (La Mendola, 1982), Rend. Sem. Mat. Brescia 7, 583–601 (1984)

    Google Scholar 

  88. E.M. Schröder, Aufbau metrischer Geometrie aus der Hexagrammbedingung. Atti Sem. Mat. Fis. Univ. Modena 33, 183–217 (1984)

    MathSciNet  MATH  Google Scholar 

  89. F. Schur, Über den Fundamentalsatz der projectiven Geometrie. Math. Ann. 51, 401–409 (1899)

    Article  MATH  Google Scholar 

  90. F. Schur, Über die Grundlagen der Geometrie. Math. Ann. 55, 265–292 (1902)

    Article  MATH  Google Scholar 

  91. K. Schütte, B.L. van der Waerden, Das Problem der dreizehn Kugeln. Math. Ann. 125, 325–334 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  92. J.G. Semple, G.T. Kneebone, Algebraic Projective Geometry (Oxford University Press, Oxford, 1998) (Reprint of the 1952 original)

    Google Scholar 

  93. J.T. Smith, Orthogonal geometries I. II. Geom. Dedicata 1(221–235), 334–339 (1973)

    MathSciNet  MATH  Google Scholar 

  94. J.T. Smith, Metric geometries of arbitrary dimension. Geom. Dedicata 2, 349–370 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  95. J.T. Smith, Generalized metric geometries of arbitrary dimension. Geom. Dedicata 2, 485–497 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  96. J.T. Smith, Group theoretic characterization of elliptic geometries of arbitrary dimension. Math. Nachr. 67, 265–272 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  97. J.T. Smith, Point-hyperplane axioms for orthogonal geometries. Geom. Dedicata 17, 279–286 (1985)

    MathSciNet  MATH  Google Scholar 

  98. J.T. Smith, Group theoretic characterization of metric geometries of arbitrary dimension. Geom. Dedicata 17, 287–296 (1985)

    MathSciNet  MATH  Google Scholar 

  99. E. Snapper, R.J. Troyer, Metric Affine Geometry (Academic Press, New York, 1971)

    MATH  Google Scholar 

  100. H. Struve, Ein spiegelungsgeometrischer Aufbau der Galileischen Geometrie. Beiträge Algebra Geom. 17, 197–211 (1984)

    MATH  Google Scholar 

  101. H. Struve, R. Struve, Ein spiegelungsgeometrischer Aufbau der cominkowskischen Geometrie. Abh. Math. Sem. Univ. Hamburg 54, 111–118 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  102. H. Struve, R. Struve, Eine synthetische Charakterisierung der Cayley-Kleinschen Geometrien. Z. Math. Logik Grundlag. Math. 31, 569–573 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  103. H. Struve, R. Struve, Endliche Cayley-Kleinsche Geometrien. Arch. Math. (Basel) 48, 178–184 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  104. H. Struve, R. Struve, Zum Begriff der projektiv-metrischen Ebene. Z. Math. Logik Grundlag. Math. 34, 79–88 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  105. H. Struve, R. Struve, Coeuklidische Hjelmslevgruppen. J. Geom. 34, 181–186 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  106. H. Struve, R. Struve, Projective spaces with Cayley-Klein metrics. J. Geom. 81, 155–167 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  107. H. Struve, R. Struve, Lattice theory and metric geometry. Algebra Universalis 58, 461–477 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  108. H. Struve, R. Struve, Non-euclidean geometries: the Cayley-Klein approach. J. Geom. 98, 151–170 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  109. R. Struve, An axiomatic foundation of Cayley-Klein geometries. J. Geom. 107, 225–248 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  110. G. Szekeres, Kinematic geometry: an axiomatic system for Minkowski space-time. J. Aust. Math. Soc. 8, 134–160 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  111. R. Torretti, Philosophy of Geometry from Riemann to Poincaré (D. Reidel, Dordrecht, 1976)

    MATH  Google Scholar 

  112. O. Veblen, J.W. Young, Projective Geometry, vols. 1 and 2 (Ginn and Co, Boston, 1910 and 1918)

    Google Scholar 

  113. H. Wiener, Sechs Abhandlungen über das Rechnen mit Spiegelungen, nebst Anwendungen auf die Geometrie der Bewegungen und auf die projective Geometrie (Breitkopf & Härtel, Leipzig, 1893)

    MATH  Google Scholar 

  114. J.A. Wolf, Spaces of Constant Curvature (McGraw-Hill, New York, 1967)

    MATH  Google Scholar 

  115. H. Wolff, Minkowskische und absolute Geometrie. Math. Ann. 171, 144–193 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  116. I.M. Yaglom, B.A. Rosenfeld, E.U. Yasinskaya, Projective metrics (Russian). Uspehi Mat. Nauk 19 No. 3 (119), 51–113 (1964) (also in Russ. Math. Surveys 19, No. 5, 49–107 (1964))

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Pambuccian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pambuccian, V., Struve, H., Struve, R. (2017). Metric Geometries in an Axiomatic Perspective. In: Ji, L., Papadopoulos, A., Yamada, S. (eds) From Riemann to Differential Geometry and Relativity. Springer, Cham. https://doi.org/10.1007/978-3-319-60039-0_14

Download citation

Publish with us

Policies and ethics