Skip to main content

Optimal Power Scheduling for SIC-Based Uplink Wireless Networks with Guaranteed Real-Time Performance

  • Conference paper
  • First Online:
Book cover Wireless Algorithms, Systems, and Applications (WASA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10251))

  • 3517 Accesses

Abstract

The k-SIC technology can support at most k parallel transmissions, thus it has the prominent capability of providing fast media access, which is vital for real-time industrial wireless networks. However, it suffers from high power consumption because high interference has to be overcome. In this paper, given the real-time performance requirement of an uplink network supporting k-SIC, we study how to minimize aggregate power consumption of users by power scheduling. We prove that the problem is solvable in polynomial time. A universal algorithm with complexity of O(n 3 ) is proposed for k-SIC, where n is the number of transmitters. For the special case of k = 2, another algorithm with complexity of O(L 4 ) is presented, where L is the frame length. Simulation results reveal that both the aggregate power consumption and the maximal transmit power will be exponentially declined with further relaxation of the real-time performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    UEs and transmitters are used interchangeably in this paper.

References

  1. Zhang, X.C., Haenggi, M.: The performance of successive interference cancellation in random wireless networks. IEEE Trans. Inf. Theory 60(10), 6368–6388 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Yang, Z., Ding, Z., Fan, P., Al-Dhahir, N.: General power allocation scheme to guarantee quality of service in downlink and uplink NOMA systems. IEEE Trans. Wirel. Commun. 15(11), 7244–7257 (2016)

    Article  Google Scholar 

  3. Sen, S., Santhapuri, N., Chouhury, R.R., Nelakuditi, S.: Successive interference cancellation: a back-of-the-envelope perspective. In: Proceedings of Hotnets 2010, CA, USA, 20–21 October 2010

    Google Scholar 

  4. Weber, S.P., Andrews, J.G., Ying, Y.X., de Veciana, G.: Transmission capacity of wireless ad hoc networks with successive interference cancellation. IEEE Trans. Inf. Theory 52(8), 2799–2814 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Halperin, D., Anderson, T., Wetherall, D.: Taking the sting out of carrier sense: interference cancellation for wireless LANs. In: Proceedings of ACM MobiCom 2008, San Francisco, USA, 14–19 September 2008

    Google Scholar 

  6. Xu, C., Li, P., Sammy, C.: Decentralized power allocating for random access with successive interference cancellation. IEEE J. Sel. Area Commun. 31(11), 2387–2396 (2013)

    Article  Google Scholar 

  7. Karipidis, E., Yuan, D., He, Q., Larsson, E.G.: Max-min power allocating in wireless networks with successive interference cancellation. IEEE Trans. Wirel. Commun. 14(11), 6269–6282 (2015)

    Article  Google Scholar 

  8. Yuan, D., Vangelis, A., Lei, C., Eleftherios, K., Larsson, G.E.: On optimal link activation with interference cancellation in wireless networking. IEEE Trans. Veh. Technol. 62(2), 939–945 (2013)

    Article  Google Scholar 

  9. Goussevskaia, O., Wattenhofer, R.: Scheduling with interference decoding: complexity and algorithms. Ad Hoc Netw. 11(6), 1732–1745 (2013)

    Article  Google Scholar 

  10. Harpreet, D., Howard, H., Viswanathan, R., Valenzuela, H.: Power-efficient system design for cellular-based machine-to-machine communications. IEEE Trans. Wirel. Commun. 12(11), 5740–5753 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This paper has been supported by National Scientific Foundation of China (61173132), Science Foundation of China University of Petroleum, Beijing (ZX20150089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaonong Xu .

Editor information

Editors and Affiliations

Appendix

Appendix

Lemma A.1

Assume \( a_{1} \ge a_{2} \ge \ldots \ge a_{n} \), \( b_{1} \le b_{2} \le \cdots \le b_{n} \), then the optimal solution to the problem

$$ \begin{aligned} & \mathop {\hbox{min} }\limits_{{X_{ij} }} \mathop \sum \limits_{i,j = 1..n} X_{ij} a_{i} b_{j} \\ {\text{s}} . {\text{t}} .\,\sum\nolimits_{i = 1..n} {X_{ij} = 1} \,\,\forall j \in \left[ {1..n} \right] & ;\,\,\,\,\sum\nolimits_{j = 1..n} {X_{ij} = 1} \,\,i \in \left[ {1..n} \right]; X_{ij} \in \left\{ {0,1} \right\}; \\ \end{aligned} $$

is \( X_{ij} = \left\{ {\begin{array}{*{20}c} {1\,\,\, \, {\text{for }}\,{\text{all}}\, i = j} \\ {0 \,\,\,\, {\text{for all}} \,i \ne j} \\ \end{array} } \right. \).

Proof.

We prove it using mathematical induction.

It is easy to prove the case n = 2 since \( a_{1} b_{1} + a_{2} b_{2} \ge a_{1} b_{2} + a_{2} b_{1} \).

Assume that the lemma is true when n = k − 1.

For n = k, order that \( \beta_{i} = b_{i} - b_{1} \) for \( \forall i \in [2..k] \). We now only need to prove that \( a_{1} b_{1} + a_{2} \left( {b_{1} + \beta_{2} } \right) + \ldots + a_{k} \left( {b_{1} + \beta_{k} } \right) \le b_{1} a_{i1} + \left( {b_{1} + \beta_{2} } \right)a_{i2} + \ldots + \left( {b_{1} + \beta_{k} } \right)a_{ik} \), where \( (a_{i1} ,a_{i2} , \ldots ,a_{ik} ) \) is any permutation of \( \{ a_{1} ,a_{2} , \ldots ,a_{k} \} \).

  • Case 1. \( a_{i1} = a_{1} \). The lemma can be proved by the induction assumption of n = k − 1.

  • Case 2. \( a_{i1} \ne a_{1} \). Since \( \left( {a_{i1} ,a_{i2} , \ldots ,a_{ik} } \right) \) is any permutation of \( \{ a_{1} ,a_{2} , \ldots ,a_{k} \} \), therefore, \( a_{i1} + a_{i2} + \ldots + a_{ik} = a_{1} + a_{2} + \ldots + a_{k} \), and there exist a \( j \in \{ 2, \ldots ,k\} \), \( a_{ij} = a_{1} \). Thus, \( b_{1} a_{i1} + \left( {b_{1} + \beta_{2} } \right)a_{i2} + \ldots + \left( {b_{1} + \beta_{k} } \right)a_{ik} \) = \( b_{1} (a_{1} + a_{2} + \ldots + a_{k} ) + \beta_{2} a_{i2} + \beta_{3} a_{i3} + \ldots + \beta_{k} a_{ik} \) = \( b_{1} (a_{1} + a_{2} + \ldots + a_{k} ) + \beta_{2} a_{i2} + \beta_{3} a_{i3} + \ldots + \beta_{j - 1} a_{{i\left( {j - 1} \right)}} + \beta_{j} a_{1} + \beta_{j + 1} a_{{i\left( {j + 1} \right)}} + \ldots + \beta_{k} a_{ik} \ge b_{1} (a_{1} + a_{2} + \ldots + a_{k} ) + \beta_{2} a_{i2} + \beta_{3} a_{i3} + \ldots + \beta_{j - 1} a_{{i\left( {j - 1} \right)}} + \beta_{j} a_{i1} + \beta_{j + 1} a_{{i\left( {j + 1} \right)}} + \ldots + \beta_{k} a_{ik} \).

Thus, the case can be proved if \( \beta_{2} a_{2} + \beta_{3} a_{3} + \ldots + \beta_{k} a_{k} \le \beta_{2} a_{i2} + \beta_{3} a_{i3} + \ldots + \beta_{j - 1} a_{{i\left( {j - 1} \right)}} + \beta_{j} a_{i1} + \beta_{j + 1} a_{{i\left( {j + 1} \right)}} + \ldots + \beta_{k} a_{ik} \).

The above inequality can be proved by the induction assumption for \( \{ a_{1} ,a_{2} , \ldots ,a_{k} \} \) and \( \{ \beta_{1} ,\beta_{2} , \ldots ,\beta_{k} \} \).

In conclusion, the lemma is proved. □

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xu, C., Ma, K., Xu, Y., Xu, Y. (2017). Optimal Power Scheduling for SIC-Based Uplink Wireless Networks with Guaranteed Real-Time Performance. In: Ma, L., Khreishah, A., Zhang, Y., Yan, M. (eds) Wireless Algorithms, Systems, and Applications. WASA 2017. Lecture Notes in Computer Science(), vol 10251. Springer, Cham. https://doi.org/10.1007/978-3-319-60033-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60033-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60032-1

  • Online ISBN: 978-3-319-60033-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics