Skip to main content

Far-Infrared Bolometers: Technical Lineages

  • Chapter
  • First Online:
Inventing a Space Mission

Abstract

Bolometers are used as detectors in the Herschel SPIRE and PACS instruments. This chapter focuses on the history of bolometer development leading to the SPIRE and PACS detectors, operating in the submillimetre and far-infrared wavelength ranges. This historical and technological review describes the main technical lineages of bolometers and how the SPIRE and PACS instruments on Herschel, respectively, employed both an adapted and improved variant of a well-established technology and a novel bolometer architecture developed especially for the mission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    NEFD is the overall NEP divided by the aperture area of the telescope, the bandwidth of the instrument, the atmospheric transmission if on earth, and various parameters characterising the optics transmission and coupling to incident radiation . In astronomy, it is often expressed in terms of Jansky (Jy) with 1 Jy = 10–26 W m–2 Hz–1.

  2. 2.

    Aperture efficiency is defined as the fraction of the power from a point source that is coupled to the detector by the optical system.

References

  • Ade PAR, Griffin MJ, Cunningham CT, Radostitz JV, Predko S, Nolt I (1984) The Queen Mary College/University of Oregon photometer for submillimetre continuum observations. Infrared Phys 24:403–415

    Article  ADS  Google Scholar 

  • Agnese P, Cigna C, Pornin J-L, Accomo R, Bonnin C, Colombel C et al (2003) Filled bolometer arrays for Herschel/PACS. Proc SPIE 4855:108–114

    Article  ADS  Google Scholar 

  • André P, Revéret V, Könyves V, Arzoumanian D, Tigé J, Gallais P et al (2016) Characterizing filaments in regions of high-mass star formation: high-resolution submilimeter imaging of the massive star-forming complex NGC 6334 with ArTéMiS. Astron Astrophys 592:A54

    Article  Google Scholar 

  • BICEP2 Collaboration, Keck Array Collaboration, SPIDER Collaboration, Ade PAR, Aitkin RW, Amiri M, Barkats D, Benton SJ, Bischoff CA et al (2015) Antenna-coupled TES bolometers used in BICEP2, keck array, and SPIDER. Astrophys J 812:176

    Article  ADS  Google Scholar 

  • Chang CL, Ade P, Aird K, Austermannc J, Beall J, Becker D et al (2012) Detectors for the south pole telescope. Phys Procedia 37:1381

    Article  ADS  Google Scholar 

  • Clarke G, Hoffer I, Richards PL (1974) Superconducting tunnel junction bolometers. Rev Phys Appl 9:69

    Article  Google Scholar 

  • Coron, N., Dambier, G., and Leblanc, J. (1972) A new type of helium-cooled bolometer. In: Manno V, Ring J (eds) Proceedings of the infrared detector techniques for space research. Reidel, Dordrecht, p 121

    Google Scholar 

  • Crill BP, Ade PAR, Artusa DR, Bhatia RS, Bock JJ, Boscaleri A, Cardoni P et al (2003) BOOMERANG: a balloon-borne millimeter-wave telescope and total power receiver for mapping anisotropy in the cosmic microwave background. Ap J Suppl 148:527

    Article  ADS  Google Scholar 

  • Dowell CD, Allen CA, Babub S, Freund MM, Gardner MB, Groseth J et al (2003) SHARC II: a Caltech Submillimeter Observatory facility camera with 384 pixels. Proc SPIE 4855:73

    Article  ADS  Google Scholar 

  • Downey PM, Jeffries AD, Meyer SS, Weiss R, Bachner FJ, Donnelly JP, Lindley WT, Mountain RW, Silversmith DJ (1984) Monolithic silicon bolometers. Appl Opt 23:910

    Article  ADS  Google Scholar 

  • Duncan WD, Robson EI, Ade PAR, Griffin MJ, Sandell G (1990) A millimetre/submillimeter common user photometer for the James Clerk Maxwell Telescope. Mon Not R Astron Soc 243:126

    Article  ADS  Google Scholar 

  • Glenn J, Bock JJ, Chattopadhyay G, Edgington SF, Lange AE, Zmuidzinas J, Mauskopf PD, Rownd B, Yuen L (1998) Bolocam: a millimetre-wave bolometric camera. Proc SPIE 3357:326

    Article  ADS  Google Scholar 

  • Glenn J, PAR A, Amariec M, Bock JJ, Edgington SF, Goldind A, Golwala S, Haig D, Lange AE, Laurent G, Mauskopf PD, Nguyen H (2003) Current status of Bolocam: a large-format millimeter-wave bolometer camera. Proc SPIE 4855:30

    Article  ADS  Google Scholar 

  • Griffin MJ, Bock JJ, Gear WK (2002) Relative performance of filled and feedhorn-coupled focal-plane architectures. Appl Opt 41:6543

    Article  ADS  Google Scholar 

  • Haller EE, Palaio NP, Rodder M (1984) NTD germanium: a novel material for low-temperature bolometers. In: Proceedings of the 4th international neutron transmutation doping conference, Gaithersburg, Maryland, 21

    Google Scholar 

  • Harper DA, Hildebrant RH, Winston R, Stiening R (1976) Heat trap—an optimized far infrared field optics system. Appl Opt 15:53

    Article  ADS  Google Scholar 

  • Holland WS, Robson EI, Gear WK, Cunningham CR, Lightfoot JF, Jenness T et al (1999) SCUBA: a common-user submillimetre camera operating on the James Clerk Maxwell telescope. Mon Not R Astron Soc 303:659

    Article  ADS  Google Scholar 

  • Holland WS, Bintley D, Chapin EL, Chrysostomou A, Davis GR, Dempsey JT et al (2013) SCUBA-2: the 10000 pixel bolometer camera on the James Clerk Maxwell Telescope. Mon Not R Astron Soc 430:2513

    Article  ADS  Google Scholar 

  • Jones RC (1953) The general theory of bolometer performance. J Opt Sot Am 43:1

    Article  ADS  Google Scholar 

  • Kreysa E, Haller EE (1982) He-3 bolometers for millimeter and submillimeter photometry. In: Kjaer K, Moorwood AFM (eds) Proceedings of the 2nd ESO infrared workshop, Garching, April 20–23. European Southern Observatory (ESO), Garching, p 197

    Google Scholar 

  • Kreysa E, Gemünd H-P, Gromke J, Haslam CGT, Reichertz L, Haller EE et al (1999) Bolometer array development at the Max-Planck-Institut für Radioastronomie. Infrared Phys Technol 40:191

    Article  ADS  Google Scholar 

  • Low FJ (1961) Low temperature germanium bolometer. J Opt Soc Am 51:1300

    Article  ADS  Google Scholar 

  • Mather J (1982) Bolometer noise: non-equilibrium theory. Appl Opt 21:1125

    Article  ADS  Google Scholar 

  • Mauskopf PD, Bock JJ, Del Castillo H, Holzapfel WH, Lange AE (1997) Composite infrared bolometers with Si3N4 micromesh absorbers. Appl Opt 36:765

    Article  ADS  Google Scholar 

  • Misawa R, Bernard J-P, Ade P, André Y, de Bernardis P, Bouzit M et al (2014) PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium. Proc SPIE 9153:91531H

    Article  Google Scholar 

  • Monfardini A, Adam R, Adane A, Ade P, André P, Beelen A et al (2013) Latest NIKA results and the NIKA-2 project. J Low Temp Phys 176:787

    Article  ADS  Google Scholar 

  • Moseley SH, Mather JC, McCammon D (1984) Thermal detectors as x-ray spectrometers. J Appl Phys 56:1257

    Article  ADS  Google Scholar 

  • Moseley SH, Dowell CD, Allen C, Phillips TG (2000) Semiconducting pop-up bolometers for far-infrared and submillimeter astronomy. In: Mangum JG, Radford SJE (eds) Proceedings of the imaging at radio through submillimeter wavelengths. ASP conference proceedings, vol 217, p 140

    Google Scholar 

  • Nishioka NS, Richards PL, Woody DP (1978) Composite bolometers for submillimeter wavelengths. Appl Opt 17:1562

    Article  ADS  Google Scholar 

  • Pascale E, Ade PAR, Bock JJ, Chapin EL, Chung J, Devlin MJ, Dicker S, Griffin M, Gundersen JO, Halpern M, Hargrave PC, Hughes DH, Klein J, MacTavish CJ, Marsden G, Martin PG, Martin TG, Mauskop P, Netterfield CB, Olmi L, Patanchon G, Rex M, Scott D, Semisch C, Thomas N, Truch MDP, Tucker C, Tucker GS, Viero MP, Wiebe DV (2008) The balloon-borne large aperture submillimeter telescope: BLAST. Ap J 681:400

    Article  ADS  Google Scholar 

  • Porter FS (2013) X-ray calorimeters. Observing photons in space: a guide to experimental space astronomy, ISSI Scientific Report Series, vol 9, chap 28

    Google Scholar 

  • Porter FS, Almy R, Apodaca E, Figueroa-Feliciano E, Galeazzi M, Kelley R, McCammon D, Stahle CK, Szymkowiak AE, Sanders WT (2000) The XQC microcalorimeter sounding rocket: a stable LTD platform 30 seconds after rocket motor burnout. Nucl Inst Methods Phys Res A 440:220

    Article  ADS  Google Scholar 

  • Radostitz JV, Nolt IG, Kittel P, Donnelly RJ (1978) Portable 3He detector cryostat for the far infrared. Rev Sci Instrum 49:86

    Article  ADS  Google Scholar 

  • Revéret V, André P, Le Pennec J, Talvard M, Agnèse P, Arnaud A et al (2014) The ArTéMiS wide-field sub-millimeter camera: preliminary on-sky performance at 350 microns. Proc SPIE 9153:915305

    Article  Google Scholar 

  • Richards PL (1994) Bolometers for infrared and millimeter waves. J Appl Phys 76:1

    Article  ADS  Google Scholar 

  • Roellig T, Houck JR (1983) A helium-3 cooled bolometer system for one millimeter continuum observations. Int J Infrared Millimeter Waves 4:299

    Article  ADS  Google Scholar 

  • Serlemitsos A (1988) Flight worthy infrared bolometers with high throughput and low NEP. Proc SPIE 0973:314

    Article  ADS  Google Scholar 

  • Turner AD, Bock JJ, Beeman JW, Glenn J, Hargrave PC, Hristov VT, Nguyen HT, Rahman F, Sethuraman S, Woodcraft AL (2001) Silicon nitride micromesh bolometer array for submillimeter astrophysics. Appl Opt 40:4921

    Article  ADS  Google Scholar 

  • Wang N, Hunter TR, Benford DJ, Serabyn E, Lis DC, Phillips TG et al (1996) Characterization of a submillimeter high-angular resolution camera with a monolithic silicon bolometer array for the Caltech Submillimeter Observatory. Appl Opt 35:6629

    Article  ADS  Google Scholar 

  • Winston R (1970) Light collection within the framework of geometrical optics. J Opt Soc Am 60:245

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Minier, V. et al. (2017). Far-Infrared Bolometers: Technical Lineages. In: Inventing a Space Mission. ISSI Scientific Report Series, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-60024-6_7

Download citation

Publish with us

Policies and ethics