Skip to main content

Abstract

Wine is the end product of the fermentative activity of yeast and bacteria. The microbiota of grape juice fermentation can vary significantly as over 40 genera and 100 different species of yeast have been isolated from grapes or wine (Table 3.1). Although the genera listed are commonly identified in surveys of grape mycobiota, some yeast species are more universally found than others, and numerous factors impact the composition of the yeast microbial community of grapes and their persistence during fermentation. Saccharomyces cerevisiae is the primary agent responsible for the conversion of grape sugars into alcohol but other yeast, collectively known as non-Saccharomyces yeast, and bacteria may also contribute to the aroma and flavor profile of the wine. Thus interspecies as well as intraspecies diversity plays an important role in the evolution of wine composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albergaria H, Arneborg N (2016) Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes: role of physiological fitness and microbial interactions. Appl Microbiol Biotechnol 100:2035–2046

    Article  CAS  PubMed  Google Scholar 

  • Almeida P, Barbosa R, Alar P, Imanishi Y, Shimada K, Turchetti B, Legras J-L, Sera M, Dequin S, Couloux A, Guy J, Bensasson D, Gonçalves P, Sampaio JP (2015) A populations genomics insight into the Mediterranean origins of wine yeast domestication. Mol Ecol 24:5412–5427

    Article  PubMed  Google Scholar 

  • Ambrona J, Vinagre A, Ramirez M (2005) Rapid asymmetrical evolution of Saccharomyces cerevisiae wine yeasts. Yeast 22:1299–1130

    Article  CAS  PubMed  Google Scholar 

  • Andorrà I, Berradre M, Rozès N, Mas A, Guillamón JM, Esteve-Zarzoso B (2010) Effect of pure and mixed cultures of the main wine yeast species on grape must fermentations. Eur Food Res Technol 231:215–224

    Article  CAS  Google Scholar 

  • Anfang N, Brajkovich M, Goddard MR (2009) Co-fermentation with Pichia kluyveri increases varietal thiol concentrations in Sauvignon Blanc. Aust J Grape Wine Res 15:1–8

    Article  CAS  Google Scholar 

  • Arévalo Villena M, Úbeda Iranzo JF, Cordero Otero RR, Briones Pérez AI (2005) Optimization of a rapid method for studying the cellular location of β-glucosidase activity in wine yeasts. J Appl Microbiol 99:558–564

    Article  PubMed  CAS  Google Scholar 

  • Arévalo Villena M, Úbeda Iranzo J, Briones Pérez A (2007) Enhancement of aroma in white wines using a β-glucosidase preparation from Debaryomyces pseudopolymorphus (A-77). Food Biotechnol 21:181–194. doi:10.1080/08905430701410605

    Article  CAS  Google Scholar 

  • Bagheri B, Bauer FF, Setati ME (2015) The diversity and dynamics of indigenous yeast communities in grape must from vineyards employing different agronomic practices and their influence on wine fermentation. S Afr J Enol Vitic 36:243–251

    CAS  Google Scholar 

  • Bakalinsky AT, Snow R (1990) The chromosomal constitution of wine strains of Saccharomyces cerevisiae. Yeast 6:367–382

    Article  CAS  PubMed  Google Scholar 

  • Baleiras Couto MM, Eijsma B, Hofstra H, Huis in’t Veld JHJ, van der Vossen JMBM (1996) Evaluation of molecular typing techniques to assign genetic diversity among Saccharomyces cerevisiae strains. Appl Environ Microbiol 62:41–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barata A, González S, Malfeito-Ferreira M, Querol A, Loureiro V (2008) Sour rot-damaged grapes are sources of wine spoilage yeasts. FEMS Yeast Res 8:1008–1017

    Article  CAS  PubMed  Google Scholar 

  • Barata A, Malfeito-Ferreira M, Loureiro V (2012) The microbial ecology of wine grape berries. Int J Food Microbiol 153:243–259

    Article  CAS  PubMed  Google Scholar 

  • Barbe JC, de Revel G, Joyeux A, Bertrand A, Lonvaud-Funel A (2001) Role of botrytized grape micro-organisms in SO2 binding phenomena. J Appl Microbiol 90:34–42

    Article  CAS  PubMed  Google Scholar 

  • Barnett JA, Delaney MA, Jones E, Magson AB, Winch B (1972) The numbers of yeast associated with wine grapes of Bordeaux. Arch Microbiol 83:52–55

    Google Scholar 

  • Belda I, Navascués E, Marquina D, Santos A, Calderon F, Benito S (2015) Dynamic analysis of physiological properties of Torulaspora delbrueckii in wine fermentations and its incidence on wine quality. Appl Microbiol Biotechnol 99:1911–1922

    Google Scholar 

  • Belda I, Ruiz J, Alastreuy –Izquierdo A, Navascués E, Marquine D, Santos A (2016a) Unraveling the enzymatic bias of wine “flavorome”: a phylo-functional study of wine related yeast species. Front Microbiol 7:12. doi:10.3389/fmicb.2016.00012

    Article  PubMed  PubMed Central  Google Scholar 

  • Belda I, Ruiz J, Navascués E, Marquina D, Santos A (2016b) Improvement of aromatic thiol release through the selection of yeasts with increased β-lyase activity. Int J Food Microbiol 225:1–8

    Article  CAS  PubMed  Google Scholar 

  • Belloch C, Perez-Torrado GSS, Perez-Ortin JE, Garcia-Martinez J, Querol A, Barrio E (2009) Chimeric genomes of natural hybrids of Saccharomyces cerevisiae and Saccharomyces kudriavzevii. Appl Environ Microbiol 75:2534–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beltran G, Torija MJ, Novo M, Ferrer N, Poblet M, Guillamon JM, Rozes N, Mas A (2002) Analysis of yeast populations during alcoholic fermentation: A six year follow-up study. Syst Appl Microbiol 25:287–293

    Article  CAS  PubMed  Google Scholar 

  • Bille E, Dauphin B, Leto J, Bougnoux ME, Beretti JL, Lotz A, Suarez S, Meyer J, Join-Lambert O, Descamps P, Grall N, Mory F, Dubreuli L, Berche P, Nassif X, Ferroni A (2012) MALDI-TOF MS Andromas strategy for the routine identification of bacteria, mycobacteria, yeasts, Aspergillus spp. and positive blood cultures. Clin Microbial Infect 18:1117–1125

    Article  CAS  Google Scholar 

  • Bisson LF (2012) Geographic origin and diversity of wine strains. Am J Enol Vitic 63:165–176

    Article  CAS  Google Scholar 

  • Bisson LF, Walker GA (2015) The microbial dynamics of wine fermentation. In: Holzapfel W (ed) Advances in fermented foods and beverages improving quality, technology and health benefits. Woodhead, Cambridge, pp 434–476

    Google Scholar 

  • Blanco P, Orriois I, Losada A (2011) Survival of commercial yeasts in the winery environment and their prevalence during spontaneous fermentations. J Ind Microbiol Biotechnol 38:235–239

    Article  CAS  PubMed  Google Scholar 

  • Bokulich NA, Bamforth CW, Mills DA (2012) A review of molecular methods for microbial community profiling of beer and wine. J Am Soc Brew Chem 70:150–162

    CAS  Google Scholar 

  • Bokulich NA, Thorngate JH, Richardson PM, Mills DA (2014) Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc Natl Acad Sci USA 25:E139–$148. doi:10.1073/pnas.1317377110

    Article  CAS  Google Scholar 

  • Bokulich NA, Collins TS, Masarweh C, Allen G, Heymann H, Ebeler SE, Mills DA (2016a) Associations among wine grape microbiome, metabolome and fermentation behavior suggest microbial contribution to regional wine characteristics. mBio 7(3):e00631–e00616. doi:10.1128/mBio.00631-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bokulich NA, Lewis ZT, Boundy-Mills K, Mills DA (2016b) A new perspective on microbial landscapes within food production. Curr Opin Biotech 37:182–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Börlin M, Venet P, Classie O, Salin F, Legras J-L, Masneuf-Pomarede I (2009) Cellular-associated Saccharomyces cerevisiae population structure revealed at high-level diversity and perennial persistence at Sauternes wine estates. Appl Environ Microbiol 82:2909–2918

    Article  CAS  Google Scholar 

  • Borneman AR, Forgan AH, Pretorius IS, Chambers PJ (2008) Comparative genome analysis of a Saccharomyces cerevisiae wine strain. FEMS Yeast Res 8:1185–1195

    Article  CAS  PubMed  Google Scholar 

  • Borneman AR, Desany BA, Riches D, Affourtit JF, Forgan AH, Pretorius IS, Egholm M, Chambers PJ (2012) The genome sequence of the wine yeast VIN7 reveals an allotriploid hybrid genome with Saccharomyces cerevisiae and Saccharomyces kudriavzevii origins. FEMS Yeast Res 12:88–96

    Article  CAS  PubMed  Google Scholar 

  • Borneman AR, Forgan A, Kolouchova R, Fraser JA, Schmidt SA (2016) Whole genome comparison reveals high levels of inbreeding and strain redundancy across the spectrum of commercial wine strains of Saccharomyces cerevisiae. G3 Genes Genom Genet 6:957–971

    Google Scholar 

  • Boulton RB, Singleton VL, Bisson LF, Kunkee RE (1996) Principles and practices of winemaking. Chapman and Hall, New York

    Book  Google Scholar 

  • Boynton PJ, Greig D (2016) Species richness influences wine ecosystem through a dominant species. Fungal Ecol 22:611–671

    Article  Google Scholar 

  • Briones AI, Ubeda J, Grando MS (1996) Differentiation of Saccharomyces cerevisiae strains isolated from fermenting musts according to karyotype patterns. Int J Food Microbiol 28:369–377

    Article  CAS  PubMed  Google Scholar 

  • Brown JC, Lindquist S (2009) A heritable switch in carbon source utilization driven by an unusual yeast prion. Genes Dev 23:2320–2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bureau G, Brun D, Vigues A, Maujean A, Vesselle G, Feuillat M (1982) Etude d’une microflore levurienne champenoise. Conn Vigne Vin 16:15–32

    CAS  Google Scholar 

  • Byrsch-Herzberg M, Seidel M (2015) Yeast diversity on grapes in two German wine growing regions. Int J Food Microbiol 214:137–144

    Article  CAS  Google Scholar 

  • Canonico L, Canonico L, Comitini F, Oro L, Ciani M (2016) Sequential fermentation with selected immobilized non-Saccharomyces yeast for reduction of ethanol content in wine. Front Microbiol 7:278. doi:10.3389/fmicb.2016.00278

    Article  PubMed  PubMed Central  Google Scholar 

  • Capece A, Granchi L, Guerrini S, Mangani S, Romaniello R, Vincenzini M, Romano P (2016) Diversity of Saccharomyces cerevisiae strains isolated from two Italian wine-producing regions. Front Microbiol 1:1018. doi:10.3389/fmicb.2016.01018

    Google Scholar 

  • Cappozzi V, Garofalo C, Chiriatti MA, Grieco F, Spano G (2015) Microbial terroir and food innovation: the case of yeast biodiversity in wine. Microbiol Res 181:75–83

    Article  CAS  Google Scholar 

  • Carro D, Pina B (2001) Genetic analysis of the karyotype instability in natural wine yeast strains. Yeast 18:1457–1470

    Article  CAS  PubMed  Google Scholar 

  • Carvalho E, Mateus N, Plet B, Pianet I, Dufourc E, De Freitas V (2006) Influence of wine pectic polysaccharides on the interactions between condensed tannins and salivary proteins. J Agric Food Chem 54:8936–8944

    Article  CAS  PubMed  Google Scholar 

  • Cavalieri D, Barberio C, Casalone E, Pinzauti F, Sebastiani F, Mortimer R, Polsinelli M (1998) Genetic and molecular diversity in Saccharomyces cerevisiae natural populations. Food Technol Biotechnol 36:45–50

    CAS  Google Scholar 

  • Chalier P, Angot B, Delteil D, Doco T, Gunata Z (2007) Interactions between aroma compounds and whole mannoprotein isolated from Saccharomyces cerevisiae strains. Food Chem 100:22–30

    Article  CAS  Google Scholar 

  • Charoenchai C, Fleet GH, Henschke PA, Todd BENT (1997) Screening of non- Saccharomyces wine yeasts for the presence of extracellular hydrolytic enzymes. Aust J Grape Wine Res 3:2–8

    Article  CAS  Google Scholar 

  • Ciani M, Comitini F (2015) Yeast interactions in multi-starter wine fermentation. Curr Opin Food Sci 1:1–6

    Article  Google Scholar 

  • Ciani M, Ferraro L (1998) Combined use of immobilized Candida stellata cells and Saccharomyces cerevisiae to improve the quality of wines. J Appl Microbiol 85:247–254

    Article  CAS  PubMed  Google Scholar 

  • Ciani M, Maccarelli F (1998) Oenological properties of non- Saccharomyces yeasts associated with wine-making. World J Microbiol Biotechnol 14:199–203

    Article  CAS  Google Scholar 

  • Ciani M, Picciotti G (1995) The growth kinetics and fermentation behaviour of some non-Saccharomyces yeasts associated with wine-making. Biotechnol Lett 17:1247–1250

    Article  CAS  Google Scholar 

  • Ciani M, Mannazzu I, Maringeli P, Clemente F, Martini A (2004) Contribution of winery resident Saccharomyces cerevisiae strains to spontaneous grape must fermentations. Antonie Van Leeuwenhoek 85:159–164

    Article  CAS  PubMed  Google Scholar 

  • Ciani M, Comitini F, Mannazzu I, Domizio P (2010) Controlled mixed culture fermentation: a new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Res 10:123–133

    Article  CAS  PubMed  Google Scholar 

  • Ciani M, Capece A, Comitini F, Canonico L, Siesto G, Romano P (2016a) Yeast interactions in inoculated wine fermentation. Front Microbiol 7:555. doi:10.3389/fmicb.2016.00555

    PubMed  PubMed Central  Google Scholar 

  • Ciani M, Morales P, Comitini F, Tronchoni J, Canonico L, Curiel JA, Oro L, Rodrigues AJ, Gonzalez R (2016b) Non-conventional yeast species for lowering ethanol content of wines. Front Microbiol 7:642. doi:10.3389/fmicb.2016.00642

    PubMed  PubMed Central  Google Scholar 

  • Clemente-Jimenez JM, Mingorance-Carzola L, Martinez-Rodriguez S, Las Heras-Vazquez FJ, Rodriguez-Vico F (2004) Molecular characterization and oenological properties of wine yeasts isolated during spontaneous fermentation of six varieties of grape must. Food Microbiol 21:149–155

    Article  CAS  Google Scholar 

  • Cliften P, Sudarsanam P, Desikan A, Fulton L, Fulton B, Majors J, Waterston R, Cohen BA, Johnston M (2003) Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301:71–76

    Article  CAS  PubMed  Google Scholar 

  • Cocolin L, Bisson LF, Mills DA (2000) Profiling of yeast dynamics in wine fermentations. FEMS Microbiol Lett 189:81–87

    Article  CAS  PubMed  Google Scholar 

  • Codon AC, Benitez T, Korhola M (1998) Chromosomal polymorphism and adaptation to specific industrial environments of Saccharomyces strains. Appl Microbiol Biotechnol 49:154–163

    Article  CAS  PubMed  Google Scholar 

  • Combina M, Mercado L, Borgo P, Elia A, Joofre V, Ganga A, Martinez C, Catania C (2005) Yeasts associated to Malbec grape berries from Mendoza, Argentina. J Appl Microbiol 98:1055–1061

    Article  CAS  PubMed  Google Scholar 

  • Combina M, PérezTorrado R, Tronchoni J, Belloch C, Querol A (2012) Genome-wide gene expression of a natural hybrid between Saccharomyces cerevisiae and S. kudriavzevii under enological conditions. Int J Food Microbiol 157:340–345

    Article  CAS  PubMed  Google Scholar 

  • Comitini F, Gobbi M, Domizio P, Romani C, Lencioni L, Mannazzu I, Ciani M (2011) Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiol 28:873–882

    Article  CAS  PubMed  Google Scholar 

  • Constanti M, Poblet M, Arola L, Mas A, Guillamon JM (1997) Analysis of yeast populations during alcoholic fermentation in a newly established winery. Am J Enol Vitic 48:339–344

    Google Scholar 

  • Contreras A, Hidalgo C, Henschke PA, Chambers PJ, Curtin C, Varela C (2014) Evaluation of non-Saccharomyces yeasts for the reduction of alcohol content in wine. Appl Environ Microbiol 80:1670–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras A, Curtin C, Varela C (2015a) Yeast population dynamics reveal a potential collaboration’ between Metschnikowia pulcherrima and Saccharomyces uvarum for the production of reduced alcohol wines during Shiraz fermentation. Appl Microbiol Biotechnol 99:1885–1895

    Article  CAS  PubMed  Google Scholar 

  • Contreras A, Hidalgo C, Schmidt S, Henschke PA, Curtin C, Varela C (2015b) The application of non- Saccharomyces yeast in fermentations with limited aeration as a strategy for the production of wine with reduced alcohol content. Int J Food Microbiol 205:7–15

    Article  CAS  PubMed  Google Scholar 

  • Cordero Otero RR, Ubeda Iranzo JF, Briones-Perez AI, Potgieter N, Villena MA, Pretorius IS, Rensburg PV (2003) Characterization of the β-glucosidase activity produced by enological strains of non-Saccharomyces yeasts. J Food Sci 68:2564–2569

    Article  CAS  Google Scholar 

  • Cordero-Bueso G, Esteve-Zarzoso B, Cabellos JM, Gil-Díaz M, Arroyo T (2013) Biotechnological potential of non-Saccharomyces yeasts isolated during spontaneous fermentations of Malvar (Vitis vinifera cv. L.) Eur Food Res Technol 23:193–207

    Article  CAS  Google Scholar 

  • Cray JA, Bell AN, Bhaganna P, Mswaka AY, Timson DJ, Hallsworth JE (2013) The biology of habitat dominance; can microbes behave as weeds? Microbial Biotechnol 6:453–492

    Article  Google Scholar 

  • Csoma H, Sipiczki M (2008) Taxonomic reclassification of Candida stellata strains reveals frequent occurrence of Candida zemplinina in wine fermentation. FEMS Yeast Res 8:1–9

    Article  CAS  Google Scholar 

  • Cubillos FA (2016) Exploiting budding yeast natural variation for industrial processes. Curr Genet. doi:10.1007/500294-016-0602-6

  • Cubillos FA, Vásquez C, Faugeron S, Ganga A, Martínez C (2009) Self-fertilization is the main sexual reproduction mechanism in native wine yeast populations. FEMS Microbiol Ecol 67:162–170

    Article  CAS  PubMed  Google Scholar 

  • Curtin C, Varela C (2014) Evaluation of non- Saccharomyces yeasts for the reduction of alcohol content in wine. Appl Environ Microbiol 80:1670–1678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dapporto L, Stefanini I, Rivero D, Polsinelli M, Capretti P, De Marchi P, Viola R, Turillazzi S, Cavalieri D (2016) Social wasp intestine host the local phenotypic variability of Saccharomyces cerevisiae strains. Yeast. doi:10.1002/yea.3173

  • Davenport RR (1974) Microecology of yeasts and yeast-like organisms associated with an English vineyard. Vitis 13:123–130

    Google Scholar 

  • Dequin S, Casaregola S (2011) The genomes of fermentative Saccharomyces. CR Biol 334:687–693

    Article  CAS  Google Scholar 

  • Di Maio S, Genna G, Gandolfo V, Amore G, Ciaccio M, Oliva D (2012) Presence of Candida zemplinina in sicilian musts and selection of a strain for wine mixed fermentations. S Afr J Enol Vitic 33:80–87

    Google Scholar 

  • Domizio P, Romani C, Lencioni L, Comitini F, Gobbi M, Mannazzu I, Ciani M (2011) Outlining a future for non-Saccharomyces yeasts: selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation. Int J Food Microbiol 147:170–180

    Article  CAS  PubMed  Google Scholar 

  • Domizio P, Liu Y, Bisson LF, Barile D (2014) Use of non-Saccharomyces wine yeasts as novel sources of mannoproteins in wine. Food Microbiol 43:5–15

    Article  CAS  PubMed  Google Scholar 

  • Domizio P, Liu Y, Bisson LF, Barile D (2017) Cell wall polysaccharides released during the alcoholic fermentation by Schizosaccharomyces pombe and S. japonicus: quantification and characterization. Food Microbiol 61:136–149

    Article  CAS  PubMed  Google Scholar 

  • Drożdż I, Makarewicz M, Sroka P, Satora P, Jankowski P (2015) Comparison of the yeast microbiota of different varieties of cool-climate grapes by PCR-RAPD. Potravinarstvo 1:293–298

    Google Scholar 

  • Dunn B, Levine RP, Sherlock G (2005) Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures. BMC Genomics 6:1–21

    Article  CAS  Google Scholar 

  • Eberlein C, Leducq J-B, Landry CR (2015) The genomics of wild yeast populations sheds light on the domestication of man’s best (micro) friend. Mol Ecol 24:5309–5311

    Article  PubMed  Google Scholar 

  • Egli CM, Edinger WD, Mitrakul CM, Henick-Kling T (1998) Dynamics of indigenous and inoculated yeast populations and their effect on the sensory character of Riesling and Chardonnay wines. J Appl Microbiol 85:779–789

    Article  CAS  PubMed  Google Scholar 

  • Englezos V, Rantsiou K, Torchio F, Rolle L, Gerbi V, Cocolin L (2015) Exploitation of the non-Saccharomyces yeast Starmerella bacillaris (synonym Candida zemplinina) in wine fermentation: physiological and molecular characterizations. Int J Food Microbiol 199:33–40

    Article  CAS  PubMed  Google Scholar 

  • Englezos V, Rantsiou K, Cravero F, Torchio F, Ortiz-Julien A, Gerbi V, Rolle L, Cocolin L (2016a) Starmerella bacillaris and Saccharomyces cerevisiae mixed fermentations to reduce ethanol content in wine. Appl Microbiol Biotechnol 100:5515–5526

    Article  CAS  PubMed  Google Scholar 

  • Englezos V, Torchio F, Cravero F, Marengo F, Giacosa S, Gerbi V, Rantsiou K, Rolle L, Cocolin L (2016b) Aroma profile and composition of Barbera wines obtained by mixed fermentations of Starmerella bacillaris (synonym Candida zemplinina) and Saccharomyces cerevisiae. Food Sci Technol 73:567–575

    CAS  Google Scholar 

  • Erny C, Raoult P, Alais A, Butterlin G, Delobel P, Matel-Radd R, Casaregola S, Legras J-L (2012) Ecological success of a group of Saccharomyces cerevisiae/Saccharomyces kudriavzevii hybrids in the northern European winemaking environment. Appl Environ Microbiol 78:3256–3265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fay JC, McCullough HL, Sniegowski PD, Eisen MB (2004) Population genetic variation in gene expression is associated with phenotypic variation in Saccharomyces cerevisiae. Genome Biol 5:R26

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernández M, Úbeda JF, Briones AI (2000) Typing of non-Saccharomyces yeasts with enzymatic activities of interest in wine-making. Int J Food Microbiol 59:29–36

    Google Scholar 

  • Fernández-González M, Di Stefano R, Briones A (2003) Hydrolysis and transformation of terpene glycosides from muscat must by different yeast species. Food Microbiol 20:35–41

    Article  Google Scholar 

  • Fleet GH (1993) The microorganisms of winemaking – isolation, enumeration and identification. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Assoc Press, Australia, pp 1–26

    Google Scholar 

  • Fleet GH, Heard GM (1993) Yeasts – growth during fermentation. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Assoc Press, Australia, pp 27–54

    Google Scholar 

  • Fleet GH, Prakitchaiwattana C, Beh AL, Heard GM (2002) The yeast ecology of wine grapes. In: Ciani M (ed) Biodiversity and biotechnology of wine yeasts. Research Signpost, Kerala, pp 1–17

    Google Scholar 

  • Francesca N, Gaglio R, Alfonzo A, Settanni L, Corona O, Mazzei P, Romano R, Piccolo A, Moschetti G (2016) The wine: typicality or mere diversity? The effect of spontaneous fermentations and biotic factors on the characteristics of wine. Agric Sci Proc 8:769–773

    Google Scholar 

  • Franco-Duarte R, Bigey F, Carreto L, Mendes I, Dequin S, Santos MAS, Pais C, Schuller D (2015) Intrastrain genomic and phenotypic variability of the commercial Saccharomyces cerevisiae strain Zymaflore VL1 reveals microevolutionary adaptation to vineyard environments. FEMS Yeast Res 15:fov063. doi:10.1093/femsyr/fov063

    Article  PubMed  CAS  Google Scholar 

  • Franco-Duarte R, Umek L, Mendes I, Castro CC, Fonseca N, Martins R, Silva-Ferreira A, Sampaio P, Pais C, Schuller D (2016) New integrative computational approaches unveil the Saccharomyces cerevisiae pheno-metabolomic fermentative profile and allow strain selection for winemaking. Food Chem 211:509–520

    Article  CAS  PubMed  Google Scholar 

  • Frost R, Quiñones I, Veldhuizen M, Alava JI, Small D, Carreiras M (2015) What can the brain teach us about winemaking? An fMRI study of alcohol level preferences. PLoS One 10(3):e0119220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fukuda K, Yamamoto N, Kiyokawa Y, Yanagiuchi T, Wakai Y, Kitamoto K, Inoue Y, Kimura A (1998) Balance of activities of alcohol acetyltransferase and esterase in Saccharomyces cerevisiae is important for production of isoamyl acetate. Appl Environ Microbiol 64:4076–4078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gallego FJ, Perez MA, Nunez Y, Hildago P (2005) Comparison of RAPDs, AFLPs and SSR marker for genetic analysis of yeast strains of Saccharomyces cerevisiae. Food Microbiol 22:561–568

    Article  CAS  Google Scholar 

  • Gamero A, Hernández-Orte P, Querol A, Ferreira V (2011) Effect of aromatic precursor addition to wine fermentations carried out with different Saccharomyces species and their hybrids. Int J Food Microbiol 147:33–44

    Article  CAS  PubMed  Google Scholar 

  • Gamero A, Tronchoni J, Querol A, Belloch C (2013) Production of aroma compounds by cryotolerant Saccharomyces species and hybrids at low and moderate fermentation temperatures. J Appl Microbiol 114:1405–1414

    Article  CAS  PubMed  Google Scholar 

  • Ganga MA, Martinez C (2004) Effect of wine yeast monoculture practice on the biodiversity of non-Saccharomyces yeasts. J Appl Microbiol 96:76–83

    Article  CAS  PubMed  Google Scholar 

  • Gangl H, Batusic M, Tscheik G, Tiefenbrunner W, Hack C, Lopandic K (2009) Exceptional fermentation characteristics of natural hybrids from Saccharomyces cerevisiae and S. kudriavzevii. New Biotechnol 25:245–251

    Article  CAS  Google Scholar 

  • Garcia DM, Jarosz DF (2014) Rebels with a cause: molecular features and physiological consequences of yeast prions. FEMS Yeast Res 14:136–147

    Article  CAS  PubMed  Google Scholar 

  • García M, Greetham D, Wimalasena TT, Phister TG, Cabellos JM, Arroyo T (2016) The phenotypic characterization of yeast strains to stress inherent to wine fermentation in warm climates. J Appl Microbiol 121:215–233

    Article  PubMed  CAS  Google Scholar 

  • Garijo P, Santamaria P, Lopez R, Sanz S, Olarte C, Gutiérrez AR (2008) The occurrence of fungi, yeasts and bacteria in the air of a Spanish winery during vintage. Int J Food Microbiol 125:141–145

    Article  CAS  PubMed  Google Scholar 

  • Garijo P, Lopez R, Santamaria P, Ocón E, Olarte C, Sanz S, Gutiérrez AR (2009) Presence of lactic acid bacteria in the air of a winery during the vinification period. Int J Food Microbiol 136:142–146

    Article  CAS  PubMed  Google Scholar 

  • Garijo P, López R, Santamaria P, Ocón E, Olarte C, Sanz S, Gutiérrez AR (2011) Presence of enological microorganisms in the grapes and the air of a vineyard during the ripening period. Eur Food Res Technol 233:359–365

    Article  CAS  Google Scholar 

  • Garofalo C, Tristezza M, Grieco F, Spano G, Capozzi V (2016) From grape berries to wine: population dynamics of cluturable yeasts associated to “Nero di Troica” autochthonous grape cultivar. World J Microbiol Biotechnol 32:59. doi:10.1007/s11274-0416-2017-4

    Article  PubMed  CAS  Google Scholar 

  • Gasch AP, Payseur BA, Pool JE (2015) The power of natural variation for model organism biology. Trends Genet 32:147. doi:10.1016/j.tig.2015.12.0003

    Article  CAS  Google Scholar 

  • Gawel R, Waters EJ (2008) The effect of glycerol on the perceived viscosity of dry white table wine. J Wine Res 19:109–114

    Article  Google Scholar 

  • Gobbi M, De Vero L, Solieri L, Comitini F, Oro L, Giudici P (2014) Fermentative aptitude of non-Saccharomyces wine yeast for reduction in the ethanol content in wine. Eur Food Res Technol 239:41–48

    CAS  Google Scholar 

  • Goddard MR, Anfang N, Tang R, Gardner RC, Jun C (2010) A distinct population of Saccharomyces cerevisiae in New Zealand: evidence for local dispersal by insects and human-aided global dispersal in oak barrels. Environ Microbiol 12:63–73

    Article  CAS  PubMed  Google Scholar 

  • González SS, Barrio E, Gafner J, Querol A (2006) Natural hybrids from Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces kudriavzevii in wine fermentations. FEMS Yeast Res 6:1221–1234

    Article  PubMed  CAS  Google Scholar 

  • González SS, Gallo L, Climent MD, Barrio E, Querol A (2007) Enological characterization of natural hybrids from Saccharomyces cerevisiae and S. kudriavzevii. Int J Food Microbiol 116:11–18

    Google Scholar 

  • González SS, Barrio E, Querol A (2008) Molecular characterization of new natural hybrids of Saccharomyces cerevisiae and Saccharomyces kudriavzevii in brewing. Appl Environ Microbiol 74:2314–2320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonzalez R, Quirós M, Morales P (2013) Yeast respiration of sugars by non-Saccharomyces yeast species: a promising and barely explored approach to lowering alcohol content of wines. Trends Food Sci Technol 29:55–61

    Article  CAS  Google Scholar 

  • González-Arenzana L, Santamaria P, López R, Tenorio C, López-Alfaro I (2012) Ecology of indigenous lactic acid bacteria along different winemaking processes of Tempranillo red wine from La Rioja (Spain). Sci World J 2012:796327

    Article  CAS  Google Scholar 

  • González-Pombo P, Pérez G, Carrau F, Guisán JM, Batista-Viera F, Brena BM (2008) One-step purification and characterization of an intracellular β-glucosidase from Metschnikowia pulcherrima. Biotechnol Lett 30:1469–1475

    Article  PubMed  CAS  Google Scholar 

  • González-Pombo P, Fariña L, Carrau F, Batista-Viera F, Brena BM (2011) A novel extracellular β-glucosidase from Issatchenkia terricola: isolation, immobilization and application for aroma enhancement of white Muscat wine. Process Biochem 46:385–389

    Article  CAS  Google Scholar 

  • Goto S, Yokotsuka I (1977) Wild yeast populations in fresh grape musts of different harvest times. J Ferment Technol 55:417–422

    Google Scholar 

  • Grangeteau C, Gerhards D, Terrat S, Dequiedt S, Alexandre H, Guilloux-Benatier M, von Wallbrunn C, Rousseaux S (2016) FT-IR spectroscopy: a powerful tool for studying inter- and intraspecific biodiversity of cultivatable non-Saccharomyces yeasts isolated from grape must. J Microbiol Methods 121:50–58

    Article  CAS  PubMed  Google Scholar 

  • Gresham D, Ruderfer DM, Pratt SC, Schacherer J, Dunham MJ, Botstein D, Kruglyak L (2006) Genome-wide detection of polymorphisms at nucleotide resolution with a single DNA microarray. Science 311:1932–1936

    Article  CAS  PubMed  Google Scholar 

  • Gueguen Y, Chemardin P, Janbon G, Arnaud A, Galzy P (1996) A very efficient β-glucosidase catalyst for the hydrolysis of flavor precursors of wines and fruit juices. J Agric Food Chem 44:2336–2340

    Article  CAS  Google Scholar 

  • Guillamon JM, Sabate J, Barrio E, Cano J, Querol A (1998) Rapid identification of wine yeast species based on RFLP of the ribosomal internal transcribed spacer (ITS) region. Arch Microbiol 169:387–392

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez AR, Lopez R, Santamaria MP, Sevilla MJ (1997) Ecology of inoculated and spontaneous fermentations in Rioja (Spain) musts, examined by mitochondrial DNA restriction analysis. Int J Food Microbiol 36:241–245

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez AR, Santamaria P, Epifanio S, Garijo P, Lopez R (1999) Ecology of spontaneous fermentation in one winery during 5 consecutive years. Lett Appl Microbiol 29:411–415

    Article  Google Scholar 

  • Haas D, Galller H, Habib J, Melkes A, Schlacher R, Buzina W, Friedl H, Martin E, Reinthaler FF (2010) Concentrations of viable airborne fungal spores and trichloroanisole in wine cellars. Int J Food Microbiol 144:126–132

    Article  CAS  PubMed  Google Scholar 

  • Halfmann R, Lindquist S (2010) Epigenetics in the extreme: prions and the inheritance of environmentally acquired traits. Science 330:629–632

    Article  CAS  PubMed  Google Scholar 

  • Halfmann R, Alberti S, Lindquist S (2010) Prions, protein homeostasis, and phenotypic diversity. Trends Cell Biol 20:125–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halfmann R, Jarosz DF, Jones SK, Chang A, Lancaster AK, Lindquist S (2012) Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 482:363–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauser NC, Fellenberg K, Gil R, Bastuck S, Hoheisel JD, Perez-Ortin JE (2001) Whole genomes of a wine yeast strain. Comp Funct Genomics 2:69–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henick-Kling T, Edinger W, Daniel P, Monk P (1998) Selective effects of sulfur dioxide and yeast starter culture addition on indigenous yeast populations and sensory characteristics of wine. J Appl Microbiol 84:865–876

    Article  CAS  Google Scholar 

  • Hernández-Orte P, Cersosimo M, Loscos N, Cacho J, Garcia-Moruno E, Ferreira V (2008) The development of varietal aroma from non-floral grapes by yeasts of different genera. Food Chem 107:1064–1077

    Article  CAS  Google Scholar 

  • Herraiz T, Reglero G, Herraiz M, Martin-Alvarez PJ, Cabezudo MD (1990) The influence of the yeast and type of culture on the volatile composition of wines fermented without sulfur dioxide. Am J Enol Vitic 41:313–318

    CAS  Google Scholar 

  • Hierro N, Gonzalez A, Mas A, Guillamon JM (2006) Diversity and evolution of non-Saccharomyces yeast populations during wine fermentation: effect of grape ripeness and cold maceration. FEMS Yeast Res 6:102–111

    Article  CAS  PubMed  Google Scholar 

  • Hu K, Qin Y, Tao Y, Zhu X, Peng C, Ullah N (2016a) Potential of glycosidase from non- Saccharomyces isolates for enhancement of wine aroma. J Food Sci 81:M935–M943

    Article  CAS  PubMed  Google Scholar 

  • Hu K, Zhu XL, Mu H, Ma Y, Ullah N, Tao YS (2016b) A novel extracellular glycosidase activity from Rhodotorula mucilaginosa: its application potential in wine aroma enhancement. Lett Appl Microbiol 62:169–176

    Article  CAS  PubMed  Google Scholar 

  • Hufnagel JC, Hofmann T (2008) Quantitative reconstruction of the nonvolatile sensometabolome of a red wine. J Agric Food Chem 56:9190–9199

    Article  CAS  PubMed  Google Scholar 

  • Hughes TR, Roberts CJ, Dai H, Jones AR, Meer MR, Slade D, Burchard J, Dow S, Ward TR, Kidd MJ, Friend SH, Marton MJ (2000) Widespread aneuploidy revealed by DNA microarray expression profiling. Nat Genet 25:333–337

    Article  CAS  PubMed  Google Scholar 

  • Ivey M, Massel M, Phister TG (2013) Microbial interactions in food fermentations. Annu Rev Food Sci Technol 4:141–162

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo Canas PM, Ubeda Iranzo JF, Briones Perez AI (1997) Study of the karyotype of wine yeasts isolated in the region of Valdepenas in two consecutive vintages. Food Microbiol 14:221–225

    Article  Google Scholar 

  • Jara C, Laurie VF, Mas A, Romero J (2016) Microbial terroir in Chilean valleys: diversity of non-conventional yeast. Front Microbiol 7:663. doi:10.3389/fmicb.2016.00663

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarosz DF, Brown JCS, Walker GA, Datta MS, Ung WL, Lancaster AK, Rotem A, Chang A, Newby GA, Weitz DA, Bisson LF, Lindquist S (2014) Cross-kingdom chemical communication drives a heritable, mutually beneficial prion-based transformation of metabolism. Cell 158:1083–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston JR, Baccari C, Mortimer RK (2000) Genotypic characterization of strains of commercial wine yeasts by tetrad analysis. Res Microbiol 151:583–590

    Article  CAS  PubMed  Google Scholar 

  • Jolly NP, Varela C, Pretorius IS (2013) Not your ordinary yeast; non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res 14:215–237

    Article  PubMed  CAS  Google Scholar 

  • Juega M, Nunez YP, Carrascosa A V, Martinez-Rodriguez AJ (2012) Influence of yeast mannoproteins in the aroma improvement of white wines. J Food Sci 77:M499–M504

    Article  CAS  PubMed  Google Scholar 

  • Kelley AC, Busby B, Wickner RB (2014) Effect of domestication on the spread of the [PIN +] prion in Saccharomyces cerevisiae. Genetics 197:1007–1024

    Article  CAS  Google Scholar 

  • Khan W, Augustyn OPH, Van der Westhuizen TJ, Lambrechts MG, Pretorius IS (2000) Geographic distribution and evaluation of Saccharomyces cerevisiae strains isolated from vineyards in the warmer inland regions of the Western Cape in South Africa. S Afr J Enol Vitic 21:17–31

    CAS  Google Scholar 

  • Knight S, Goddard MR (2015) Quantifying separation and similarity in a Saccharomyces cerevisiae metapopulation. IMSE J 9:361–370

    CAS  Google Scholar 

  • Kunkee RE, Bisson LF (1993) Winemaking yeasts. In: Rose AH, Harrison JS (eds) The yeasts: yeast technology. Academic, London, pp 69–126

    Chapter  Google Scholar 

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 74:331–371

    Article  Google Scholar 

  • Kurtzman CP, Mateo RQ, Kolecka A, Theeleu B, Robert V, Boekhout T (2015) Advances in yeast systematics and phylogeny and their use as predictors of biotechnologically important metabolic pathways. FEMS Yeast Res 15:fov050. doi:10.1093/femsyr/fov050

    Article  PubMed  CAS  Google Scholar 

  • Landry CR, Aubin-Horth N (2014) Recent advances in ecological genomics: from phenotypic plasticity to convergent and adaptive evolution and speciation. In: Landry CR, Aubin-Horth A (eds) Ecological genomics: ecology of genes and genomes. Springer, Heidelberg, pp 1–5

    Chapter  Google Scholar 

  • Landry CR, Oh J, Hartl DL, Cavalieri D (2006a) Genome-wide scan reveals that genetic variation for transcriptional plasticity in yeast is biased towards multi-copy and dispensable genes. Gene 366:343–351

    Article  CAS  PubMed  Google Scholar 

  • Landry CR, Townsend JP, Hartl DL, Cavalieri D (2006b) Ecological and evolutionary genomics of Saccharomyces cerevisiae. Mol Ecol 15:575–591

    Article  CAS  PubMed  Google Scholar 

  • Legras J-L, Merdinoglu D, Cornuet JM, Karst F (2007) Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol Ecol 16:2091–2102

    Article  CAS  PubMed  Google Scholar 

  • Lema C, Garcia-Jares C, Orriols I, Angulo L (1996) Contribution of Saccharomyces and non-Saccharomyces populations to the production of some components of Albarino wine aroma. Am J Enol Vitic 47:206–216

    CAS  Google Scholar 

  • Liti G, Barton DBH, Louis EJ (2006) Sequence diversity, reproductive isolation and species concepts in Saccharomyces. Genetics 174:839–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V, Tsai IJ, Bergman CM, Bensasson D, O’Kelly MJ T, van Oudenaarden A, Barton DBH, Bailes E, Nguyen Ba AN, Jones M, Quail M, Goodhead I, Sims S, Smith F, Blomberg A, Durbin R, Louis EJ (2009) Population genomics of domestic and wild yeast. Nature doi:10.1038/nature07743

  • Liu P-T, Lu L, Duan C-Q, Yan G-L (2016) The contribution of indigenous non-Saccharomyces wine yeast to improved aromatic quality of Cabernet Sauvignon wines by spontaneous fermentation. Food Sci Technol 71:356–363

    CAS  Google Scholar 

  • Lleixa J, Martin V, del Portillo MC, Carrau F, Beltran G, Mas A (2016) Comparison of fermentation and wines produced by inoculation with Hanseniaspora vineae and Saccharomyces cerevisiae. Front Microbiol 7:338. doi:10.3389/fmicb.2016.00338

    PubMed  PubMed Central  Google Scholar 

  • Longo E, Vezinhet F (1993) Chromosomal rearrangements during vegetative growth of a wild strain of Saccharomyces cerevisiae. Appl Environ Microbiol 59:322–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Longo E, Cansado J, Agrelo D, Villa TG (1991) Effect of climatic conditions on yeast diversity in grape musts from northwest Spain. Am J Enol Vitic 42:141–144

    Google Scholar 

  • Lopandic K, Pfliegler W, Tiefenbrunner W, Gangl H, Sipiczki M, Sterflinger K (2016) Genotypic and phenotypic evolution of yeast interspecies hybrids during high sugar fermentation. Microbiol Biotechnol 100:6331–6343

    Article  CAS  Google Scholar 

  • Lopes CA, van Broock M, Querol A, Caballero AC (2002) Saccharomyces cerevisiae wine yeast populations in a cold region in Argentinean Patagonia. A study at different fermentation scales. J Appl Microbiol 93:608–615

    Article  CAS  PubMed  Google Scholar 

  • López S, Mateo JJ, Maicas S (2014) Characterisation of Hanseniaspora isolates with potential aroma-enhancing properties in Muscat wines. S Afr J Enol Vitic 35:292–303

    Google Scholar 

  • Magwene PM (2014) Revisiting Mortimer’s genome renewal hypothesis: heterozygosity, homothallism, and the potential for adaptation in yeast. In: Landry CR, Aubin-Horth A (eds) Ecological genomics: ecology of genes and genomes. Springer, Heidelberg, pp 37–48

    Chapter  Google Scholar 

  • Magyar I, Tóth T (2011) Comparative evaluation of some oenological properties in wine strains of Candida stellata, Candida zemplinina, Saccharomyces uvarum and Saccharomyces cerevisiae. Food Microbiol 28:94–100

    Article  CAS  PubMed  Google Scholar 

  • Mangado A, Tronchoni J, Morales P, Novo M, Quirós M, Gonzalez R (2015) An impaired ubiquitin ligase complex flavors initial growth of auxotrophic yeast strains in synthetic grape must. Appl Microbiol Biotechnol 99:1273–1286

    Article  CAS  PubMed  Google Scholar 

  • Manzanares P, Rojas V, Genove S (2000) A preliminary search for anthocyanin- β -D-glucosidase activity in non- Saccharomyces wine yeasts. Int J Food Sci Technol 35:95–103

    Article  CAS  Google Scholar 

  • Marsit S, Dequin S (2015) Diversity and adaptive evolution of Saccharomyces wine yeast: a review. FEMS Yeast Res 15:fov067. doi:10.1093/femsyr/fov067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marsit S, Sanchez I, Galeote V, Dequin S (2016) Horizontally acquired oligopeptide transporters favour adaptation of Saccharomyces cerevisiae wine yeast to oenological environments. Environ Microbiol 18:1148–1161

    Article  CAS  PubMed  Google Scholar 

  • Martin V, Giorello F, Fariña L, Minteguiaga M, Salzman V, Boido E, Aguilar PS, Gaggero C, Dellacassa E, Mas A, Carrau F (2016) De novo synthesis of benzenoid compounds by the yeast Hanseniaspora vineae increases flavor diversity of wines. J Agric Food Chem 64:4574–4583

    Article  CAS  PubMed  Google Scholar 

  • Martini A (2003) Biotechnology of natural and winery-associated strains of Saccharomyces cerevisiae. Int Microbiol 6:207–209

    Article  CAS  PubMed  Google Scholar 

  • Martini A, Ciani M, Scorzetti G (1996) Direct enumeration and isolation of wine yeasts from grape surfaces. Am J Enol Vitic 47:435–440

    Google Scholar 

  • Masneuf I, Hansen J, Groth C, Piskur J, Dubourdieu D (1998) New hybrids between Saccharomyces sensu stricto yeast species found among wine and cider production strains. Appl Environ Microbiol 64:3887–3892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masneuf-Pomarede I, Salin F, Börlin M, Coton E, Coton M, Le Jeure C, Legras J-L (2016) Microsatellite analysis of Saccharomyces uvarum diversity. FEMS Yeast Res 16:fov002. doi:10.1093/femsyr/fov002

    Article  Google Scholar 

  • Maturano YP, Mestre MV, Esteve-Zarzoso B, Nally MC, Lerena MC, Toro ME, Vazquez F, Combina M (2015) Yeast population dynamics during prefermentative cold soak of Cabernet Sauvignon and Malbec wines. Int J Food Microbiol 199:23–32

    Article  CAS  PubMed  Google Scholar 

  • McMahon H, Zoecklein BW, Fugelsang K, Jasinski Y (1999) Quantification of glycosidase activities in selected yeasts and lactic acid bacteria. J Ind Microbiol Biotechnol 23:198–203

    Article  CAS  Google Scholar 

  • Medina K, Boido E, Fariña L, Dellacassa E, Carrau F (2016) Non-Saccharomyces and Saccharomyces strains co-fermentation increases acetaldehyde accumulation effect on anthocyanin-derived pigments in Tannat red wines. Yeast 33:339–343

    Article  CAS  PubMed  Google Scholar 

  • Mendes Ferreira A, Climaco MC, Mendes Faia A (2001) The role of non-Saccharomyces species in releasing glycosidic bound fraction of grape aroma components – a preliminary study. J Appl Microbiol 91:67–71

    Article  CAS  PubMed  Google Scholar 

  • Mercado L, Dalcero A, Masuelli R, Combina M (2004) Diversity of Saccharomyces strains on grapes and winery surfaces: analysis of their contribution to fermentative flora of Malbec wine from Mendoza (Argentina) during two consecutive years. Food Microbiol 24:403–412

    Article  CAS  Google Scholar 

  • Moothoo-Padayachie A, Kandappa HR, Krishna SBN, Maier T, Govender P (2013) Biotyping Saccharomyces cerevisiae strains using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Eur Food Res Technol 236:351–364

    Article  CAS  Google Scholar 

  • Morales P, Rojas V, Quirós M, Gonzalez R (2015) The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture. Appl Microbiol Biotechnol 99:3993–4003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira N, Mendes F, Guedes de Pinho P, Hogg T, Vasconcelos I (2008) Heavy sulphur compounds, higher alcohols and esters production profile of Hanseniaspora uvarum and Hanseniaspora guilliermondii grown as pure and mixed cultures in grape must. Int J Food Microbiol 124:231–238

    Article  CAS  PubMed  Google Scholar 

  • Mortimer RK (2000) Evolution and variation of the yeast (Saccharomyces) genome. Genome Res 10:403–409

    Article  CAS  PubMed  Google Scholar 

  • Mortimer R, Polsinelli M (1999) On the origin of wine yeast. Res Microbiol 150:199–204

    Article  CAS  PubMed  Google Scholar 

  • Mortimer R, Romano P, Suzzi G, Polsinelli M (1994) Genome renewal: a new phenomenon revealed from an examination of 43 strains of Saccharomyces cerevisiae derived from natural fermentations of grape musts. Yeast 10:1543–1552

    Article  CAS  PubMed  Google Scholar 

  • Myers CL, Dunham MJ, Kung SY, Troyanskaya OG (2004) Accurate detection of aneuploidies in array CGH and gene expression microarray data. Bioinformatics 20:3533–3543

    Article  CAS  PubMed  Google Scholar 

  • Naumov G (1996) Genetic identification of biological species in the Saccharomyces sensu stricto complex. J Ind Microbiol 17:295–302

    Article  CAS  Google Scholar 

  • Naumov GI, James SA, Naumova ES, Louis EJ, Roberts IN (2000) Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae. Int J Sys Evol Microbiol 50:1931–1942

    Article  CAS  Google Scholar 

  • Nidelet T, Brial P, Camarasa C, Dequin S (2016) Diversity of flux distribution in central carbon metabolism of S. cerevisiae strains from diverse environments. Microbiol Cell Funct 15:85. doi:10.1186/s12934-016-0456-0

    Article  CAS  Google Scholar 

  • Nisiotou AA, Nychas G-JE (2007) Yeast populations residing on healthy Botrytis-infected grapes from a vineyard in Attica, Greece. Appl Environ Microbiol 73:2765–2768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noble AC, Bursick GF (1984) The contribution of glycerol to perceived viscosity and sweetness in white wine. Am J Enol Vitic 35:110–112

    CAS  Google Scholar 

  • Noé Arroyo-López F, Pérez-Través L, Querol A, Barrio E (2011) Exclusion of Saccharomyces kudriavzevii from a wine model system mediated by Saccharomyces cerevisiae. Yeast 28:423–435

    Article  PubMed  CAS  Google Scholar 

  • Novo M, Bigey F, Beyne E, Galeote V, Gavory F, Mallet S, Cambon B, Legras J-L, Wincker P, Casaregola S, Dequin S (2009) Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc Natl Acad Sci USA 106:16333–16338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ocón E, Garijo P, Sanz S, Olarte C, López R, Santamaria P, Gutiérrez AR (2013) Analysis of airborne yeast in one winery over a period of one year. Food Control 30:585–589

    Article  Google Scholar 

  • Oshiro G, Winzeler EA (2000) Aneuploidy – it’s more common than you think. Nat Biotechnol 18:715–716

    Article  CAS  PubMed  Google Scholar 

  • Padilla B, Garcia-Fernández D, González B, Izidora I, Esteve-Zarzoso B, Beltran G, Mas A (2016a) Yeast biodiversity from DOQ Priorat uninoculated fermentations. Front Microbiol 7:930. doi:10.3389/fmicb.2016.00930

    PubMed  PubMed Central  Google Scholar 

  • Padilla B, Gil JV, Manzanares P (2016b) Past and future of non-Saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma and complexity. Front Microbiol 7:411. doi:10.3389/fmicb.2016.00411

    PubMed  PubMed Central  Google Scholar 

  • Pallmann CL, Brown JA, Olineka TL, Cocolin L, Mills DA, Bisson LF (2001) Use of WL medium to profile native flora fermentations. Am J Enol Vitic 52:198–203

    CAS  Google Scholar 

  • Parish ME, Carroll DE (1985) Indigenous yeasts associated with muscadine (Vitis rotundifolia) grapes and musts. Am J Enol Vitic 36:165–169

    Google Scholar 

  • Peris D, Lopes CA, Belloch L, Querol A, Barrio E (2012a) Comparative genomics among Saccharomyces cerevisiae and Saccharomyces kudriavzevii natural hybrid strains isolated from wine and beer reveals different origins. BMC Genomics 13:407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peris D, Lopes CA, Arias A, Barrio E (2012b) Reconstruction of the evolutionary history of Saccharomyces cerevisiae × S. kudriavzevii hybrids based on multilocus sequence analysis. PLoS One 7(9):e45527. doi:10.1371/journal.pone.0045527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peris D, Belloch C, Lopandic K, Álvares-Pérez JM, Querol A, Barrio E (2012c) The molecular characterization of new types of Saccharomyces cerevisiae × S. kudriavzevii hybrid yeast unveils a high genetic diversity. Yeast 29:81–91

    Article  CAS  PubMed  Google Scholar 

  • Peris D, Arias A, Orlic S, Belloch C, Pérez-Través L, Querol A, Barrio E (2015) Mitochondrial introgression suggests extensive ancestral hybridization events among Saccharomyces cerevisiae. bioRxiv. doi:10.1101/028324

  • Peris D, Pérez-Través L, Belloch C, Querol A (2016) Enological characterization of Spanish Saccharomyces kudriavzevii strains, one of the closest relatives to parental strains of winemaking and brewing Saccharomyces cerevisiae × S. kudriavzevii hybrids. Food Microbiol 53:31–40

    Google Scholar 

  • Peter J, Schacherer J (2016) Population genomics of yeasts: towards a comprehensive view across a broad evolutionary scale. Yeast 33:73–81

    Article  CAS  PubMed  Google Scholar 

  • Phister TG, Mills DA (2003) Real-time PCR assay for detection and enumeration of Dekkera bruxellensis in wine. Appl Environ Microbiol 69:7430–7434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polizzotto G, Barone E, Ponticello G, Fasciana T, Barbera D, Corona O, Amore G, Giammanco A, Oliva D (2016) Isolation, identification and oenological characterization of non-Saccharomyces yeasts in a Mediterranean island. Lett Appl Microbiol 63:131–138

    Article  CAS  PubMed  Google Scholar 

  • Portillo MC, Mas A (2016) Analysis of microbial diversity and dynamic wine fermentation of Grenache grape variety by high-throughput barcoding sequencing. Food Sci Technol 72:317–321

    CAS  Google Scholar 

  • Prakitchaiwattana CJ, Fleet GH, Heard GM (2004) Application and evaluation of denaturing gradient gel electrophoresis to analyze the yeast ecology of wine grapes. FEMS Yeast Res 4:865–877

    Article  CAS  PubMed  Google Scholar 

  • Pretorius IS, Lambrechts MG (2000) Yeast and its importance to wine aroma – a review. S Afr J Enol Vitic 21:97–129

    Google Scholar 

  • Querol A, Barrio E, Ramon D (1994) Population dynamics of natural Saccharomyces strains during wine fermentation. Int J Food Microbiol 21:315–323

    Article  CAS  PubMed  Google Scholar 

  • Quirós M, Rojas V, Gonzalez R, Morales P (2014) Selection of non- Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration. Int J Food Microbiol 181:85–91

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishnan V, Walker GA, Fan Q, Ogawa M, Luo Y, Luong P, Joseph CML, Bisson LF (2016) Inter-kingdom modification of metabolic behavior: [GAR +] prion induction in Saccharomyces cerevisiae mediated by ecosystem bacteria. Front Ecol Evol  doi: 10.3389/fevo.2016.00137

    Google Scholar 

  • Raspor P, Milek DM, Polanc J, Smole Mozina S, Cadez N (2006) Yeasts isolated from three varieties of grapes cultivated indifferent locations of the Dolenjska vine-growing region, Slovenia. Int J Food Microbiol 109:97–102

    Article  CAS  PubMed  Google Scholar 

  • Regueiro LA, Costas CL, Lopez Rubio JE (1993) Influence of viticultural and enological practices on the development of yeast populations during winemaking. Am J Enol Vitic 44:405–408

    Google Scholar 

  • Rementeria A, Rodriguez JA, Cadaval A, Amenabar R, Muguruza JR, Hernando FL, Sevilla MJ (2003) Yeast associated with spontaneous fermentations of white wines from the “Txakoli de Bizkaia” region (Basque Country, North Spain). Int J Food Microbiol 86:201–207

    Article  CAS  PubMed  Google Scholar 

  • Renault P, Miot-sertier C, Marullo P, Lagarrigue L, Lonvaud-funel A, Bely M (2009) Genetic characterization and phenotypic variability in Torulaspora delbrueckii species: potential applications in the wine industry. Int J Food Microbiol 134:201–120

    Article  CAS  PubMed  Google Scholar 

  • Renault P, Coulon J, Moine V, Thibon C, Bely M (2016) Enhanced 3-Sulfanylhexan-1-ol production in sequential mixed fermentation with Torulaspora delbrueckii/Saccharomyces cerevisiae reveals a situation of synergistic interaction between two Industrial strains. Front Microbiol 7:293. doi:10.3389/fmicb.2016.00293

    Article  PubMed  PubMed Central  Google Scholar 

  • Renouf V, Perello MC, Strehaiano P, Lonvaud-Funel A (2006a) Global survey of the microbial ecosystem during alcoholic fermentation in winemaking. J Int Sci Vigne Vin 40:101–116

    CAS  Google Scholar 

  • Renouf V, Falcou M, Miot-Sertier C, Perello MC, de Revel G, Lonvaud-Funel A (2006b) Interactions between Brettanomyces bruxellensis and the other yeasts species during the first steps of winemaking. J Appl Microbiol 100:1208–1219

    Article  CAS  PubMed  Google Scholar 

  • Renouf V, Claisse O, Lonvaud-Funel A (2007) Inventory and monitoring of wine microbial consortia. Appl Microbiol Biotechnol 75:149–164

    Article  CAS  PubMed  Google Scholar 

  • Robinson AL, Ebeler SE, Heymann H, Boss PK, Solomon PS, Trengove RD (2009) Interactions between wine volatile compounds and grape and wine matrix components influence aroma compound headspace partitioning. J Agric Food Chem 57:10313–10322

    Article  CAS  PubMed  Google Scholar 

  • Robinson HA, Pinharanda A, Bensasso A (2016) Summer temperature can predict the distribution of wild yeast populations. Ecol Evol 6:1236–1250

    Article  PubMed  PubMed Central  Google Scholar 

  • Röcker J, Strub S, Ebert K, Grossmann M (2016) Usage of different aerobic non-Saccharomyces yeasts and experimental conditions as a tool for reducing the potential ethanol content in wines. Eur Food Res Technol. doi:10.1007/s00217-016-2703-3

  • Rodríguez ME, Lopes CA, Van Broock M, Valles S, Ramón D, Caballero AC (2004) Screening and typing of Patagonian wine yeasts for glycosidase activities. J Appl Microbiol. 96:84–95

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez ME, Lopes C, Valles S, Giraudo MR, Caballero A (2007) Selection and preliminary characterization of β-glycosidases producer Patagonian wild yeasts. Enzyme Microb Technol 41:812–820

    Article  CAS  Google Scholar 

  • Rojas V, Gil JV, Piñaga F, Manzanares P (2001) Studies on acetate ester production by non-Saccharomyces wine yeasts. Int J Food Microbiol 70:283–289

    Article  CAS  PubMed  Google Scholar 

  • Rojas V, Gil JV, Piñaga F, Manzanares P (2003) Acetate ester formation in wine by mixed cultures in laboratory fermentations. Int J Food Microbiol 86:181–188

    Article  CAS  PubMed  Google Scholar 

  • Romani C, Domizio P, Lencioni L, Gobbi M, Comitini F, Ciani M, Mannazzu I (2010) Polysaccharides and glycerol production by non-Saccharomyces wine yeasts in mixed fermentation. Quad Vitic Enol Univ Torino 31:185–189

    Google Scholar 

  • Romano P, Suzzi G (1993) Higher alcohol and acetoin production by Zygosaccharomyces wine yeasts. J Appl Bacteriol 75:541–545

    Article  CAS  Google Scholar 

  • Rosi I, Vinella M, Domizio P (1994) Characterization of β-glucosidase activity in yeasts of oenological origin. J Appl Bacteriol 77:519–527

    Article  CAS  PubMed  Google Scholar 

  • Rosini G, Federici F, Martini A (1982) Yeast flora of grape berries during ripening. Microb Ecol 8:83–89

    Article  CAS  PubMed  Google Scholar 

  • Rossouw D, Bauer FF (2016) Exploring the phenotypic space of non-Saccharomyces wine yeast biodiversity. Food Microbiol 55:32–46

    Article  CAS  PubMed  Google Scholar 

  • Sabate J, Cano J, Querol A, Guillamon JM (1998) Diversity of Saccharomyces strains in wine fermentations: analysis for two consecutive years. Lett Appl Microbiol 26:452–455

    Article  CAS  PubMed  Google Scholar 

  • Sabate J, Cano J, Esteve-Zarzoso B, Guillamon JM (2002) Isolation and identification of yeasts associated with vineyard and winery by RFLP analysis of ribosomal genes and mitochondrial DNA. Microbiol Res 157:267–274

    Article  CAS  PubMed  Google Scholar 

  • Sabel A, Martens S, Petri A, König H, Claus H (2014) Wickerhamomyces anomalus AS1: a new strain with potential to improve wine aroma. Ann Microbiol 64:483–491

    Article  CAS  Google Scholar 

  • Sadoudi M, Tourdot-Maréchal R, Rousseaux S, Steyer D, Gallardo-Chacón J, Ballester J, Vichi S, Guérin-Schneider R, Caixach J, Alexandre H (2012) Yeast e yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non- Saccharomyces and Saccharomyces yeasts. Food Microbiol 32:243–253

    Article  CAS  PubMed  Google Scholar 

  • Salinas F, de Boer CG, Abarca V, Garcia V, Cuevas M, Araos S, Larrondo LF, Martinez C, Cubillos FA (2016) Natural variation in non-coding regions underlying phenotypic diversity in budding yeast. Sci Rep 6:21849. doi:10.1038/srep21849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampaio JP, Gonçalves P (2008) Natural populations of Saccharomyces kudriavzevii in Portugal are associated with oak bark and are sympatric with S. cerevisiae and S. paradoxus. Appl Environ Microbiol 74:2144–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santamaria P, López R, López E, Garijo P, Gutiérrez AR (2008) Permanence of yeast inocula in the winery ecosystem and presence in spontaneous fermentations. Eur Food Res Technol 227:1563–1567

    Article  CAS  Google Scholar 

  • Sapis-Domercq S, Bertrand A, Mur F, Sarre C (1977) Influence des produits de traitment de al vigne sur la microflore levurienne. Conn Vigne Vin 11:227–242

    CAS  Google Scholar 

  • Schacherer J, Ruderfer DM, Gresham D, Dolinski K, Botstein D, Kruglyak L (2007) Genome-wide analysis of nucleotide-level variation in commonly used Saccharomyces cerevisiae strains. PLoS One (3):e322. doi:10.1371/journal.pone.0000322

  • Schacherer J, Shapiro JA, Ruderfer DM, Kruglyak L (2009) Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature. doi:10.1038/nature07670

  • Schuller D, Alves H, Dequin S, Casal M (2005) Ecological survey of Saccharomyces cerevisiae strains from vineyards in the Vinho Verde region of Portugal. FEMS Microbiol Ecol 51:167–177

    Article  CAS  PubMed  Google Scholar 

  • Schutz M, Gafner J (1994) Dynamics of the yeast strain population during spontaneous alcoholic fermentation determined by CHEF gel electrophoresis. Lett Appl Microbiol 19:253–257

    Article  CAS  Google Scholar 

  • Setati ME, Jacobson D, Bauer FF (2015) Sequence-based analysis of the Vitis vinifera L. cv Cabernet Sauvignon grape must mycobiome in three South African vineyards employing distinc agronomic systems. Front Microbiol 6:1358. doi:10.3389/fmicb.2015.01358

    Article  PubMed  PubMed Central  Google Scholar 

  • Sipiczki M (2002) Taxonomic and physiological diversity of Saccharomyces bayanus. In: Ciani M (ed) Biodiversity and biotechnology of wine yeasts. Research Signpost, Kerala, pp 53–69

    Google Scholar 

  • Sipiczki M (2006) Metschnikowia strains isolated from Botrytized grapes antagonize fungal and bacterial growth by iron depletion. Appl Environ Microbiol 72:6716–6724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soden A, Francis I, Oakey H, Henschke PA (2000) Effects of co-fermentation with Candida stellata and Saccharomyces cerevisiae on the aroma and composition of Chardonnay wine. Aust J Grape Wine Res 6:21–30

    Article  CAS  Google Scholar 

  • Spagna G, Barbagallo RN, Palmeri R, Restuccia C, Giudici P (2002) Properties of endogenous β-glucosidase of a Pichia anomala strain isolated from Sicilian musts and wines. Enzyme Microb Technol 31:1036–1041

    Article  CAS  Google Scholar 

  • Stefanini I, Dapporto L, Legras J-L, Calabietta A, Di Paola M, De Filippo C, Viola R, Capretti P, Polsinelli M, Turillazzis S, Cavalieri D (2012) Role of social wasps in Saccharomyces cerevisiae ecology and evolution. Proc Natl Acad Sci USA 109:13398–13403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanini I, Dapporto L, Berná L, Polsinelli M, Turillazzis S, Cavalieri D (2016) Social wasps are a yeast mating nest. Proc Natl Acad Sci USA 113:2247–2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strauss MLA, Jolly NP, Lambrechts MG, Van Rensburg P (2001) Screening for the production of extracellular hydrolytic enzymes by non-Saccharomyces wine. J Appl Microbiol 91:182–190

    Article  CAS  PubMed  Google Scholar 

  • Swangkeaw J, Vichitphan S, Butzke CE, Vichitphan K (2009) The characterization of a novel Pichia anomala β-glucosidase with potentially aroma-enhancing capabilities in wine. Ann Microbiol 59:335–343

    Article  CAS  Google Scholar 

  • Swangkeaw J, Vichitphan S, Butzke CE, Vichitphan K (2011) Characterization of β -glucosidases from Hanseniaspora sp. and Pichia anomala with potentially aroma-enhancing capabilities in juice and wine. World J Microbiol Biotechnol 27:423–430

    Article  CAS  Google Scholar 

  • Tamang JP, Watanabe K, Holzapfel W (2016) Diversity of microorganisms in global fermented foods and beverages. Front Microbiol 7:377. doi:10.3389/fmicb.2016.00377

    PubMed  PubMed Central  Google Scholar 

  • Torija MJ, Rozes N, Poblet M, Guillamon JM, Mas A (2001) Yeast population dynamics in spontaneous fermentations: comparison between two different wine-producing areas over a period of three years. Antonie Van Leeuwenhoek 79:345–352

    Article  CAS  PubMed  Google Scholar 

  • Townsend JP, Cavalieri D, Hartl DL (2003) Population genetic variation in genome-wide gene expression. Mol Biol Evol 20:955–963

    Article  CAS  PubMed  Google Scholar 

  • Tronchoni J, Rozès N, Querol A, Guillamón JM (2012) Lipid composition of wine strains of Saccharomyces kudriavzevii and Saccharomyces cerevisiae grown at low temperature. Int J Food Microbiol 155:191–198

    Article  CAS  PubMed  Google Scholar 

  • Tsai IJ, Bensasson D, Burt A, Koufopanou V (2008) Population genomics of the wild yeast Saccharomyces paradoxus: quantifying the life cycle. Proc Natl Acad Sci USA 105:4957–4962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valero E, Cambon B, Schuller D, Casal M, Dequin S (2006) Biodiversity of Saccharomyces yeast strains from grape berries of wine producing areas using starter commercial yeasts. FEMS Yeast Res 7:317–329

    Article  PubMed  CAS  Google Scholar 

  • Valero E, Cambon B, Schuller D, Casal M, Dequin S (2007) Biodiversity of Saccharomyces yeast strains from grape berries of wine producing areas using starter commercial yeasts. FEMS Yeast Res 7:317–329

    Article  CAS  PubMed  Google Scholar 

  • Van der Westhuizen TJ, Augustyn OHP, Kahn W, Pretorius IS (2000a) Seasonal variation of indigenous Saccharomyces cerevisiae strains isolated from vineyards of the Western Cape in South Africa. S Afr J Enol Vitic 21:10–16

    Google Scholar 

  • Van der Westhuizen TJ, Augustyn OHP, Pretorius IS (2000b) Geographical distribution of indigenous Saccharomyces cerevisiae strains isolated from vineyards in the costal regions of the Western Cape in South Africa. S Afr J Enol Vitic 21:3–9

    Google Scholar 

  • Van Keulen H, Lindmark DG, Zeman KE, Gerlosky W (2003) Yeasts present during spontaneous fermentation of Lake Erie Chardonnay, Pinot Gris and Riesling. Antonie Van Leeuwenhoek 83:149–154

    Article  PubMed  Google Scholar 

  • Varela C, Sengler F, Solomon M, Curtin C (2016) Volatile flavour profile of reduced alcohol wines fermented with the non-conventional yeast species Metschnikowia pulcherrima and Saccharomyces uvarum. Food Chem 209:57–64

    Article  CAS  PubMed  Google Scholar 

  • Versavaud A, Courcoux P, Roulland C, Dulau L, Hallet J-N (1995) Genetic diversity and geographical distribution of wild Saccharomyces cerevisiae strains from the wine-producing area of Charentes, France. Appl Environ Microbiol 61:3521–3529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vezinhet F, Hallet J-N, Valade M, Poulard A (1992) Ecological survey of wine yeast strains by molecular methods of identification. Am J Enol Vitic 43:83–86

    Google Scholar 

  • Viana F, Gil JV, Genovés S, Vallés S, Manzanares P (2008) Rational selection of non-Saccharomyces wine yeasts for mixed starters based on ester formation and enological traits. Food Microbiol 25:778–785

    Article  CAS  PubMed  Google Scholar 

  • Vidal S, Francis L, Williams P, Kwiatkowski M, Gawel R, Cheynier V, Waters E (2004) The mouth-feel properties of polysaccharides and anthocyanins in a wine like medium. Food Chem 85:519–525

    Article  CAS  Google Scholar 

  • Vigentini I, De Lorenziz G, Fabrizio V, Valdetara F, Faccincani M, Panont CA, Picozzi C, Imazio S, Failla O, Foschino R (2015) The vintage effect overcomes the terroir effect: a three year survey on the wine yeast biodiversity in Franciacorta and Oltrepò Pavese, two northern Italian vine-growing areas. Microbiology 16:362–373

    Article  CAS  Google Scholar 

  • Villalba ML, Sáez JS, del Monaco S, Lopes CA, Sangorrín MP (2016) TdKT a new killer toxin produced by Torulaspora delbrueckii effective against wine spoilage yeasts. Int J Food Microbiol 217:94–100

    Article  CAS  PubMed  Google Scholar 

  • Visser W, Scheffers WA, Battenburg-van de Vegte WH, Van Dijken JP (1990) Oxygen requirements of yeasts. Appl Environ Microbiol 56:3785–3792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker GA, Hjelmeland A, Bokulich NA, Mills DA, Ebeler SE, Bisson LF (2016) Impact of the [GAR +] prion on fermentation and bacterial community composition with Saccharomyces cerevisiae UCD932. Am J Enol Vitic 67:296–307

    Article  Google Scholar 

  • Wallecha A, Mishra S (2003) Purification and characterization of two β-glucosidases from a thermo-tolerant yeast Pichia etchellsii. Biochim Biophys Acta Proteins Proteomics 1649:74–84

    Article  CAS  Google Scholar 

  • Wang Q-M, Liu W-Q, Liti G, Wang S-A, Bai F-Y (2012) Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity. Mol Ecol 21:5404–5417

    Article  PubMed  Google Scholar 

  • Wang C, Garcia-Fernández D, Mas A, Esteve-Zaszoso B (2015a) Fungal diversity in grape must and wine fermentation assessed by massive sequencing, quantitative PCR and DGGE. Front Microbiol 6:1156. doi:10.3389/fmicb.2015.01156

    PubMed  PubMed Central  Google Scholar 

  • Wang C, Mas A, Esteve-zarzoso B (2015b) Interaction between Hanseniaspora uvarum and Saccharomyces cerevisiae during alcoholic fermentation. Int J Food Microbiol 206:67–74

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Mas A, Esteve-Zarzosa B (2016) The interaction between Saccharomyces cerevisiae and non-Saccharomyces yeast during alcoholic fermentation is species and strain specific. Front Microbiol 7:502. doi:10.3389/fmicb.2016.00502

    PubMed  PubMed Central  Google Scholar 

  • Whitener MEB, Carlin S, Jacobson D, Weighill D, Divol B, Conterno L, Du Toit M, Vrhovsek U (2015) Early fermentation volatile metabolite profile of non-Saccharomyces yeasts in red and white grape must: a targeted approach. LWT - Food Sci Technol 64:412–422

    Article  CAS  Google Scholar 

  • Williams KM, Liu P, Fay JC (2015) Evolution of ecological dominance in yeast species in high-sugar environments. Evolution 69:2079–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winzeler EA, Castillo-Davis CI, Oshiro G, Liang D, Richards DR, Zhou Y, Hartl DL (2003) Genetic diversity in yeast assessed with whole-genome oligonucleotide arrays. Genetics 163:79–89

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolters JF, Chiu K, Fiumera HL (2015) Population structure of mitochondrial genomes in Saccharomyces cerevisiae. BMC Genomics 16:451. doi:10.1186/s12864-015-1664-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xufre A, Albergaria H, Inacio J, Spencer-Martins I, Girio F (2006) Application of fluorescence in situ hybridization (FISH) to the analysis of yeast population dynamics in winery and laboratory grape must fermentations. Int J Food Microbiol 108:376–384

    CAS  PubMed  Google Scholar 

  • Yanagida F, Ichinose F, Shinohara T, Goto S (1992) Distribution of wild yeasts in the white grape varieties at central Japan. J Gen Appl Microbiol 38:501–504

    Article  Google Scholar 

  • Yanai T, Sato M (1999) Isolation and properties of β-glucosidase produced by Debaryomyces hansenii and its application in winemakig. Am J Enol Vitic 50:231–235

    CAS  Google Scholar 

  • Zhang H, Richards KD, Wilson S, Lee SA, Sheehan H, Roncoroni M, Gardner RC (2015) Genetic characterization of strains of Saccharomyces uvarum from New Zealand wineries. Food Microbiol 46:92–99

    Article  PubMed  CAS  Google Scholar 

  • Zott K, Thibon C, Bely M, Lonvaud-funel A, Dubourdieu D, Masneuf-pomarede I (2011) The grape must non-Saccharomyces microbial community: impact on volatile thiol release. Int J Food Microbiol 151:210–215

    Article  CAS  PubMed  Google Scholar 

  • Zuchowska M, Jaenicke E, König H, Claus H (2015) Allelic variants of hexose transporter Hxt3p and hexokinases Hxk1p/Hxp2p in strains of Saccharomyces cerevisiae and interspecies hybrids. Yeast 32:657–669

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda F. Bisson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bisson, L.F., Joseph, C.M.L., Domizio, P. (2017). Yeasts. In: König, H., Unden, G., Fröhlich, J. (eds) Biology of Microorganisms on Grapes, in Must and in Wine. Springer, Cham. https://doi.org/10.1007/978-3-319-60021-5_3

Download citation

Publish with us

Policies and ethics