Skip to main content

Molecular Methods for Identification of Wine Microorganisms and Yeast Development

  • Chapter
  • First Online:

Abstract

A prerequisite for the biochemical and physiological investigation of microorganisms is the isolation and management of pure cultures. Nevertheless, most of the environmental microorganisms are graded as “yet not cultivable” because the nutritional requirements are unknown or they could not be isolated due to the fact that fast-growing strains overgrow other microorganisms of a microbiota. In addition to plating techniques, isolation without cultivation and analysis of microbes could be performed by micromanipulation techniques or the application of optical tweezers followed by the utilization of PCR-based technologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andorra I, Monteiro M, Esteve-Zarzoso B, Albergaria H, Mas A (2011) Analysis and direct quantification of Saccharomyces cerevisiae and Hanseniaspora guilliermondii populations during alcoholic fermentation by fluorescence in situ hybridization, flow cytometry and quantitative PCR. Food Microbiol 28:1483–1491

    Article  CAS  PubMed  Google Scholar 

  • Andrei A, Zervos MJ (2006) The application of molecular techniques to the study of hospital infection. Arch Pathol Lab Med 130:662–668

    CAS  PubMed  Google Scholar 

  • Ashkin A, Dziedzic JM, Yamane Y (1987) Optical trapping and manipulation of single cells using infrared laser beams. Nature 330:769–771

    Article  CAS  PubMed  Google Scholar 

  • Bae S, Fleet GH, Heard GM (2006) Lactic acid bacteria associated with wine grapes from several Australian vineyards. J Appl Microbiol 100:712–727

    Article  CAS  PubMed  Google Scholar 

  • Bakoss P (1970) Cloning of leptospires by micromanipulator. Bull World Health Organ 43:599–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barros RR, Carvalho MDGS, Peralta JM, Facklam RR, Teixeira LM (2001) Phenotypic and genotypic characterization of Pediococcus strains isolated from human clinical sources. J Clin Microbiol 39:1241–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck P, Huber R (1997) Detection of cell viability in cultures of hyperthermophiles. FEMS Microbiol Lett 147:1114

    Google Scholar 

  • Bellis M, Pagès M, Roizès G (1987) A simple and rapid method for preparing yeast chromosomes for pulse field gel electrophoresis. Nucleic Acids Res 15:6749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bester L, Cameron M, du Toit M, Witthuhn RC (2010) PCR and DGGE detection limits for wine spoilage microbes. S Afr J Enol Vitic 31:26–33

    CAS  Google Scholar 

  • Birren B, Lai E (1994) Rapid pulsed field separation of DNA molecules up to 250 kb. Nucleic Acids Res 22:5366–5370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blasco L, Ferrer S, Pardo I (2003) Development of specific fluorescent oligonucleotide probes for in situ identification of wine lactic acid bacteria. FEMS Microbiol Lett 225:115–123

    Article  CAS  PubMed  Google Scholar 

  • Blättel V, Petri A, Rabenstein A, Kuever J, König H (2013) Differentiation of species of the genus Saccharomyces using biomolecular fingerprinting methods. Appl Microbiol Biotechnol 97:4597–4606

    Article  PubMed  CAS  Google Scholar 

  • Blomberg A, Adler L (1989) Roles of glycerol and glycerol 3-phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae. J Bacteriol 171:1087–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH, Pretorius IS, Egholm M, Chambers PJ (2012) The genome sequence of the wine yeast VIN7 reveals an allotriploid hybrid genome with Saccharomyces cerevisiae and Saccharomyces kudriavzevii origins. FEMS Yeast Res 12:88–96

    Article  CAS  PubMed  Google Scholar 

  • Bowyer JW, Skerman VBD (1968) Production of axenic cultures of soilborne and endophytic bluegreen algae. J Gen Microbiol 54:299–306

    Article  CAS  PubMed  Google Scholar 

  • Bradford D, Hugenholtz P, Seviour EM, Cunningham MA, Stratton H, Seviour RJ, Blackall LL (1996) 16S rRNA analysis of isolates obtained from gram-negative, filamentous bacteria micromanipulated from activated sludge. Syst Appl Microbiol 19:334–343

    Article  Google Scholar 

  • Branco P, Monteiro M, Moura P, Albergaria H (2012) Survival rate of wine-related yeasts during alcoholic fermentation assessed by direct live/dead staining combined with fluorescence in situ hybridization. Int J Food Microbiol 158:49–57

    Article  CAS  PubMed  Google Scholar 

  • Carrau JL, Dillon AJP, Serafini LA, Pasqual MS (1990) L-malic acid degrading yeast for wine making. Patent WO1990008820

    Google Scholar 

  • Christ E, Kowalczyk M, Zuchowska M, Claus H, Löwenstein R, Szopinska-Morawska A, Renaut J, König H (2015) An exemplary model study for overcoming stuck fermentation during spontaneous fermentation with the aid of a Saccharomyces triple hybrid. J Agric Sci 7:18–34

    Google Scholar 

  • Claus H, Rötlich H, Filip Z (1992) DNA fingerprints of Pseudomonas spp. using rotating field electrophoresis. Microb Releases 1:11–16

    CAS  PubMed  Google Scholar 

  • Claus H, Jackson TA, Filip Z (1995) Characterization of Serratia entomophila strains by genomic DNA fingerprints and plasmid profiles. Microbiol Res 150:159–166

    Article  CAS  Google Scholar 

  • Cocolin L, Pepe V, Comitini F, Comi G, Ciani M (2004) Enological and genetic traits of Saccharomyces cerevisiae isolated from former and modern wineries. FEMS Yeast Res 5:237–245

    Article  CAS  PubMed  Google Scholar 

  • Cocolin L, Alessandria V, Dolci P, Gorra R, Rantsiou K (2013) Culture independent methods to assess the diversity and dynamics of microbiota during food fermentation. Int J Food Microbiol 167:29–43

    Article  CAS  PubMed  Google Scholar 

  • Coenye T, Gevers D, Van de Peer Y, Vandamme P, Swings J (2005) Towards a prokaryotic genomic taxonomy. FEMS Microbiol Rev 29:147–167

    Article  CAS  PubMed  Google Scholar 

  • Csutorás C, Hudák O, Rácz K, Rácz L (2014) Technological experiments for the enhancement of glycerol content in high quality wines. J Agric Chem Environ 3:48–52

    Google Scholar 

  • Daniel P, de Weale E, Hallet JN (1993) Optimization of transverse alternating field electrophoresis for strain identification of Leuconostoc oenos. Appl Microbiol Biotechnol 38:638–641

    Article  CAS  Google Scholar 

  • Delaherche A, Claisse O, Lonvaud-Funel A (2004) Detection and quantification of Brettanomyces bruxellensis and ‘ropy’ Pediococcus damnosus strains in wine by real-time polymerase chain reaction. J Appl Microbiol 97:910–915

    Article  CAS  PubMed  Google Scholar 

  • Divol B, Miot-Sertier C, Lonvaud-Funel A (2006) Genetic characterization of strains of Saccharomyces cerevisiae responsible for ‘refermentation’ in Botrytis-affected wines. J Appl Microbiol 100:516–526

    Article  CAS  PubMed  Google Scholar 

  • Fröhlich J (2002) Fluorescence in situ hybridization (FISH) and single cell micro-manipulation as novel applications for identification and isolation of new Oenococcus strains Yeast–Bacteria Interactions Lallemand. Langenlois 10:33–37

    Google Scholar 

  • Fröhlich J (2017) Unpublished data

    Google Scholar 

  • Fröhlich J, König H (1998) Verfahren und Gerät zur Isolierung von aeroben und anaeroben prokaryotischen Einzelzellen bzw Klonen aus Misch und Reinkulturen. Patent DE 198 08 969 C2

    Google Scholar 

  • Fröhlich J, König H (1999a) Rapid isolation of single microbial cells from mixed natural and laboratory populations with the aid of a micromanipulator. Syst Appl Microbiol 22:249–257

    Article  PubMed  Google Scholar 

  • Fröhlich J, König H (1999b) Ethidium bromide: a fast fluorescent staining procedure for the detection of symbiotic partnership of flagellates and prokaryotes. J Microbiol Methods 35:121–127

    Article  PubMed  Google Scholar 

  • Fröhlich J, König H (2000) New techniques for isolation of single prokaryotic cells. FEMS Microbiol Rev 24:567–572

    Article  PubMed  Google Scholar 

  • Fröhlich J, Pfannebecker J (2007) Species-independent DNA Fingerprint analysis with primers derived from the NotI identification Sequence. Patent WO002007131776

    Google Scholar 

  • Fröhlich J, Pfannebecker J (2012) (n)SAPD PCR-A new PCR method for the identification of the wine microbiota. In: Arbeitsgemeinschaft für Lebensmittel-, Veterinär- und Agrarwesen, 67. ALVA – Jahrestagung 2012, “Ernährung sichern-trotz begrenzter Ressourcen”, pp 200–202. ISSN:1606-612X

    Google Scholar 

  • Fröhlich J, Besier A, Kraft F (2017) Unpublished data

    Google Scholar 

  • Fröhlich J, Kahle D, König H (1998a) Isolation of single bacteria from mixed populations with the aid of a micromanipulator. Biospectrum (special volume):110

    Google Scholar 

  • Fröhlich J, König H, Kahle D (1998b) Isolation of microorganisms. BioNews (Eppendorf) 10:4

    Google Scholar 

  • Fröhlich J, Salzbrunn U, König H (2002) Neue Anwendungen der Mikromanipulation zur Analyse komplexer, mikrobieller Lebensgemeinschaften. Biospektrum 1:43–46

    Google Scholar 

  • Fröhlich J, Eck J, Meurer G, Naumer C, Büscher J, Mampel J (2016) Method of producing yeast mutants and the use thereof. Patent WO002016128296

    Google Scholar 

  • Fuchs BM, Glöckner FO, Wulf J, Amann R (2000) Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Appl Environ Microbiol (8):3603–3607

    Google Scholar 

  • Fuchs B, Syutsubo K, Ludwig W, Amann R (2001) In situ accessibility of Escherichia coli 23S rRNA to fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 67:961–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fugelsang KC, Edwards CG (2007) Wine microbiology. Practical applications and procedures. Springer, Heidelberg

    Google Scholar 

  • Gafan GP, Spratt DA (2005) Denaturing gradient gel electrophoresis gel expansion (DGGEGE) – an attempt to resolve the limitations of co-migration in the DGGE of complex polymicrobial communities. FEMS Microbiol Lett 253:303–307

    Article  CAS  PubMed  Google Scholar 

  • Giudici P, Caggia C, Pulvirenti A, Rainieri S (1998) Karyotyping of Saccharomyces strains with different temperature profiles. J Appl Microbiol 84:811–819

    Article  CAS  PubMed  Google Scholar 

  • Glover RLK, Abaidoo RC, Jakobsen M, Jespersen L (2005) Biodiversity of Saccharomyces cerevisiae isolated from a survey of pito production sites in various parts of Ghana. Syst Appl Microbiol 28:755–761

    Article  CAS  PubMed  Google Scholar 

  • Guerrini S, Bastianini A, Blaiotta G, Granchi L, Moschetti G, Coppola S, Romano P, Vincenzini M (2003) Phenotypic and genotypic characterization of Oenococcus oeni strains isolated from Italian wines. Int J Food Microbiol 83:1–14

    Article  CAS  PubMed  Google Scholar 

  • Guijo S, Mauricio JC, Salmon JM, Ortega M (1997) Determination of the relative ploidy in different Saccharomyces cerevisiae strains used for fermentation and ‘Flor’ film ageing of dry Sherry-type wines. Yeast 13:101–117

    Article  CAS  PubMed  Google Scholar 

  • Gurtler V, Mayall BC (2001) Genomic approaches to typing, taxonomy and evolution of bacterial isolates. Int J Syst Evol Microbiol 51:3–16

    Article  CAS  PubMed  Google Scholar 

  • Hamilton WJ (1978) The isolation and cultivation of a single spore using a sterile disposable petri dish and a micromanipulator. Med Lab Sci 35:405

    CAS  PubMed  Google Scholar 

  • Harbeck MC, Rothenberg PL (1995) A technique for isolating single cells for analysis by reverse transcription polymerase chain reaction. Anal Biochem 230:193–196

    Article  CAS  PubMed  Google Scholar 

  • Hayashi N, Arai R, Tada S, Taguchi H, Ogawa Y (2007) Detection and identification of Brettanomyces/Dekkera sp. yeasts with a loop-mediated isothermal amplification method. Food Microbiol 24:778–785

    Article  CAS  PubMed  Google Scholar 

  • Herschleb J, Ananiev G, Schwartz DC (2007) Pulsed-field gel electrophoresis. Nat Protoc 2:1–8

    Article  CAS  Google Scholar 

  • Hierro N, Esteve-Zarzoso B, González A, Mas A, Guillamón JM (2006) Real-time quantitative PCR (QPCR) and reverse transcription-QPCR for detection and enumeration of total yeasts in wine. Appl Environ Microbiol 72:7148–7155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hierro N, Esteve-Zarzoso B, Mas A, Guillamón JM (2007) Monitoring of Saccharomyces and Hanseniaspora populations during alcoholic fermentation by real-time quantitative PCR. FEMS Yeast Res 7:1340–1349

    Article  CAS  PubMed  Google Scholar 

  • Hirschhäuser S, Fröhlich J (2007) Multiplex PCR for species discrimination of Sclerotiniaceae by novel laccase introns. Int J Food Microbiol 118:151–157

    Article  PubMed  CAS  Google Scholar 

  • Hirschhäuser S, Fröhlich J, Gneipel A, Schönig I, König H (2005) Fast protocols for the 5S rDNA and ITS-2 based identification of Oenococcus oeni. FEMS Microbiol Lett 244:165–171

    Article  PubMed  CAS  Google Scholar 

  • Huber R (1999) Die Laserpinzette als Basis für Einzelzellkultivierungen. Biospektrum 4:289–291

    Google Scholar 

  • Huber R, Burggraf S, Mayer T, Barns SM, Rossnagel P, Stetter KO (1995) Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature 376:5758

    Article  Google Scholar 

  • Huys G, Vananneyt M, D’Haene K, Vankerckhoven V, Goossens H, Swings J (2006) Accuracy of species identity of commercial bacterial cultures intended for probiotic or nutritional use. Res Microbiol 157:803–810

    Article  CAS  PubMed  Google Scholar 

  • Jang SJ, Han HL, Lee SH, Ryu SY, Chaulagain BP, Moon YL, Kim DH, Jeong OY, Shin JH, Moon DS, Park YJ (2005) PFGE-based epidemiological study of an outbreak of Candida tropicalis candiduria: the importance of medical waste as a reservoir of nosocomial infection. Jpn J Infect Dis 58:263–267

    CAS  PubMed  Google Scholar 

  • Jinno Y, Yoshiura K, Niikawa N (1990) Use of psoralen as extinguisher of contaminated DNA in PCR. Nucleic Acids Res 18:6739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnstone KI (1969) The isolation and cultivation of single organisms. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 1. Academic, New York, pp 455–471

    Google Scholar 

  • Johnstone KI (1973) Micromanipulation of bacteria. The cultivation of single bacteria and their spores by the agar gel dissection technique. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Jones PR, Gawel R, Francis IL, Waters EJ (2008) The influence of interactions between major white wine components on the aroma, flavour and texture of model white wine. Food Qual Prefer 19:596–607

    Article  Google Scholar 

  • Katsuragi T (2001) Selection of hybrids by differential staining and micromanipulation. In: Spencer JFT, Ragout de Spencer AL (eds) Methods in biotechnology 14: food microbiology protocols. Humana Press Inc, Totowa, pp 341–347. doi:10.1385/1-59259-029-2:341

    Google Scholar 

  • Kavanagh K, Whittaker PA (1996) Application of protoplast fusion to the nonconventional yeast. Enzyme Microb Technol 18:45–51

    Article  CAS  Google Scholar 

  • Kell DB, Kaprelyants AS, Weichart DH, Harwood CR, Barer MR (1998) Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie Van Leeuwenhoek 73:169–187

    Article  CAS  PubMed  Google Scholar 

  • Kelly WJ, Huang CM, Asmundson RV (1993) Comparison of Leuconostoc oenos strains by pulsed-field gel electrophoresis. Appl Environ Microbiol 59:3969–3972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkpatrick FH, Dumals MM, White HW, Giseley KB (1993) Influence of the agarose matrix in pulsed-field electrophoresis. Electrophoresis 14:349–354

    Article  CAS  PubMed  Google Scholar 

  • Krämer J (1997) Lebensmittel-Mikrobiologie. Ulmer, Stuttgart

    Google Scholar 

  • Kubota K, Ohashi A, Imachi H, Harada H (2006) Improved in situ hybridization efficiency with locked-nucleic-acid-incorporated DNA probes. Appl Environ Microbiol 72:5311–5317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kvist T, Ahring BK, Lasken RS, Westermann P (2007) Specific single-cell isolation and genomic amplification of uncultured microorganisms. Appl Microbiol Biotechnol 74:926–935

    Article  CAS  PubMed  Google Scholar 

  • Lamoureux M, Prèvost H, Cavin JF, Diviés C (1993) Recognition of Leuconostoc oenos strains by the use of DNA restriction profiles. Appl Microbiol Biotechnol 39:547–552

    Article  CAS  PubMed  Google Scholar 

  • Larisika M, Claus H, König H (2008) Pulsed-field gel electrophoresis for the discrimination of Oenococcus oeni isolates from different wine-growing regions in Germany. Int J Food Microbiol 123:171–176

    Article  CAS  PubMed  Google Scholar 

  • Le Jeune C, Lollier M, Demuyter C, Erny C, Legras JL, Aigle M, Masneuf-Pomarède I (2007) Characterization of natural hybrids of Saccharomyces cerevisiae and Saccharomyces bayanus var. uvarum. FEMS Yeast Res 7:540–549

    Article  PubMed  CAS  Google Scholar 

  • Lechiancole T, Blaiotta G, Messina D, Fusco V, Villani F, Salzano G (2006) Evaluation of intraspecific diversities in Oenococcus oeni through analysis of genomic and expressed DNA. Syst Appl Microbiol 29:375–381

    Article  CAS  PubMed  Google Scholar 

  • Louie HJ (2005) FDA GRAS notice for genetically enhanced Saccharomyces cerevisiae yeast. http://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/ucm268877.pdf

  • Lubbers S, Verret C, Voilley A (2001) The effect of glycerol on the perceived aroma of a model wine and a white wine. Lebensm Wiss Technol 34:262–265

    Article  CAS  Google Scholar 

  • Luchansky JB, Glass KA, Harsono KD, Degnan AJ, Faith NG, Cauvin B, Baccus-Taylor G, Arihara K, Bater B, Maurer AJ, Cassens RG (1992) Genomic analysis of Pediococcus starter cultures used to control Listeria monocytogenes in turkey summer sausage. Appl Environ Microbiol 58:3053–3059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lukácsi G, Takó M, Nyilasi I (2006) Pulsed-field gel electrophoresis: a versatile tool for analysis of fungal genomes. Acta Microbiol Immunol Hung 53:95–104

    Article  PubMed  Google Scholar 

  • Luttermann K, Diessel E, Weidauer M (1998) Device for separation of microobjects. Patent WO 98/03628

    Google Scholar 

  • Malacrinò P, Zapparoli G, Torriani S, Dellaglio F (2003) Adaptation in Amarone wine of indigenous Oenococcus oeni strains differentiated by pulsed-field gel electrophoresis. Ann Microbiol 53:55–61

    Google Scholar 

  • Manzano M, Cocolin L, Longo B, Comi G (2004) PCR–DGGE differentiation of strains of Saccharomyces sensu stricto. Antonie Van Leeuwenhoek 85:23–27

    Article  CAS  PubMed  Google Scholar 

  • Manzano M, Cocolin L, Iacumin L, Cantoni C, Comi G (2005) A PCR–TGGE (temperature gradient gel electrophoresis) technique to assess differentiation among enological Saccharomyces cerevisiae strains. Int J Food Microbiol 101:333–339

    Article  CAS  PubMed  Google Scholar 

  • Martinez C, Gac S, Lavin A, Ganga M (2004) Genomic characterization of Saccharomyces cerevisiae strains isolated from wine-producing areas in South America. J Appl Microbiol 96:1161–1168

    Article  CAS  PubMed  Google Scholar 

  • Millet V, Lonvaud-Funel A (2000) The viable but non-culturable state of wine microorganisms during storage. Lett Appl Microbiol 30:136–141

    Article  CAS  PubMed  Google Scholar 

  • Mills DA, Johannsen EA, Cocolin L (2002) Yeast diversity and persistence in botrytis-affected wine fermentations. Appl Environ Microbiol 68:4884–4893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda-Castilleja DE, Martínez-Peniche RÁ, Aldrete-Tapia JA, Soto-Muñoz L, Iturriaga MH, Pacheco-Aguilar JR, Arvizu-Medrano SM (2016) Distribution of native lactic acid bacteria in wineries of Queretaro, Mexico and their resistance to wine-like conditions. Front Microbiol 7:1769. doi:10.3389/fmicb.2016.01769

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitterdorfer G, Mayer HK, Kneifel W, Viernstein H (2002) Clustering of Saccharomyces boulardii strains within the species S. cerevisiae using molecular typing techniques. J Appl Microbiol 93:521–530

    Article  CAS  PubMed  Google Scholar 

  • Mouton C, Reynolds H, Genco RJ (1977) Combined micromanipulation, culture and immunofluorescent techniques for the isolation of the coccal organisms comprising the “corn cob” configuration of human dental plaque. J Biol Buccale 5:321–332

    CAS  PubMed  Google Scholar 

  • Nadal D, Colomer B, Pia B (1996) Molecular polymorphism distribution in phenotypically distinct populations of wine yeast strains. Appl Environ Microbiol 62:1944–1950

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano S, Maeshima H, Matsumura A, Ohno K, Ueda S, Kuwabara Y, Yamada T (2004) A PCR assay based on a sequence-characterized amplified region marker for detection of emetic Bacillus cereus. J Food Prot 67:1694–1701

    Article  CAS  PubMed  Google Scholar 

  • Naumov GI, Naumova ES, Korshunova IV (2001) Genetic identification of cultured Saccharomyces yeasts from Asia. J Gen Appl Microbiol 47:335–338

    Article  CAS  Google Scholar 

  • Naumova ES, Korshunova IV, Jespersen L, Naumov GI (2003) Molecular genetic identification of Saccharomyces sensu stricto strains from African sorghum beer. FEMS Yeast Res 3:177–184

    Article  CAS  PubMed  Google Scholar 

  • Neumann KC, Chadd EH, Liou F, Bergman K, Block SM (1999) Characterization of photodamage to Escherichia coli in optical traps. Biophys J 77:2856–2863

    Article  Google Scholar 

  • Nevoigt E, Stahl U (1997) Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 21:231–241

    Article  CAS  PubMed  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:e63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira VA, Vicente MA, Fietto LG, de Miranda Castro I, Coutrim MX, Schuller D, Alves H, Casal M, De Oliveira Santos J, Araujo LD, Da Silva PHA, Brandao RL (2008) Biochemical and molecular characterization of Saccharomyces cerevisiae strains obtained from sugarcane fermentations and their impact in cachaca production. Appl Environ Microbiol 74:693–701

    Article  CAS  PubMed  Google Scholar 

  • Orlić S, Arroyo-López FN, Huić-Babić K, Lucilla I, Querol A, Barrio E (2010) A comparative study of the wine fermentation performance of Saccharomyces paradoxus under different nitrogen concentrations and glucose/fructose ratios. J Appl Microbiol 108:73–80

    Article  PubMed  CAS  Google Scholar 

  • Petersen RF, Nilsson-Tillgren T, Piškur J (1999) Karyotypes of Saccharomyces sensu lato species. Int J Syst Bacteriol 49:1925–1931

    Article  PubMed  Google Scholar 

  • Petri A, Pfannebecker J, Fröhlich J, König H (2013) Fast identification of wine related lactic acid bacteria by multiplex PCR. Food Microbiol 33:48–45

    Article  CAS  PubMed  Google Scholar 

  • Petri A, Rabenstein A, Kuever, König H (2015) Application of MALDI-TOF-MS and nested SAPD-PCR for discrimination of Oenococcus oeni isolates at the strain-level. J Wine Res 26:69–80

    Article  Google Scholar 

  • Pfannebecker J, Fröhlich J (2008) Use of a species-specific multiplex PCR for the identification of pediococci. Int J Food Microbiol 128:288–296

    Article  CAS  PubMed  Google Scholar 

  • Pfannebecker J, Schiffer-Hetz C, Fröhlich J, Becker B (2016) Culture medium optimization for osmotolerant yeasts by use of a parallel fermenter system and rapid microbiological testing. J Microbiol Methods 130:14–22

    Article  CAS  PubMed  Google Scholar 

  • Phister TG, Mills DA (2003) Real-time PCR assay for detection and enumeration of Dekkera bruxellensis in wine. Appl Environ Microbiol 69:7430–7434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phister TG, Rawsthorne H, Lucy Joseph CM, Mills DA (2007) Real-time PCR assay for detection and enumeration of Hanseniaspora species from wine and juice. Am J Enol Vitic 58:229–233

    CAS  Google Scholar 

  • Prescott LM, Harley JP, Klein DA (eds) (2002) Microbiology, 5th edn. McGraw-Hill, New York, pp 626–632

    Google Scholar 

  • Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729

    Article  CAS  PubMed  Google Scholar 

  • Pretorius IS, van der Westhuizen TJ (1991) The impact of yeast genetics and recombinant DNA technology on the wine industry – a review. S Afr J Enol Vitic 12:3–31

    CAS  Google Scholar 

  • Pretorius IS, Curtin CD, Chambers PJ (2012) The winemaker’s bug: from ancient wisdom to opening new vistas with frontier yeast science. Bioeng Bugs 3:147–156

    PubMed  PubMed Central  Google Scholar 

  • Prüss BM, Francis KP, von Stetten F, Scherer S (1999) Correlation of 16S ribosomal DNA signature sequences with temperature-dependent growth rates of mesophilic and psychrotolerant strains of the Bacillus cereus group. J Bacteriol 181:2624–2630

    PubMed  PubMed Central  Google Scholar 

  • Puverenti A, Solieri L, De Vero L, Giudici P (2005) Limitations on the use of polymerase chain reaction – restriction fragment length polymorphism analysis of the rDNA NTS2 region for the taxonomic classification of the species Saccharomyces cerevisiae. Can J Microbiol 51:759–764

    Article  Google Scholar 

  • Rawsthorne H, Plister TG (2006) A real-time PCR assay for the enumeration and detection of Zygosaccharomyces bailli from Wine and fruit Juices. Int J Food Microbial 112:1–7

    Article  CAS  Google Scholar 

  • Renouf V, Claisse O, Lonvaud-Funel A (2007) Inventory and monitoring of wine microbial consortia. Appl Microbiol Biotechnol 75:149–164

    Article  CAS  PubMed  Google Scholar 

  • Reuß J, Rachel R, Kämpfer P, Rabenstein A, Kuever J, Dröge S, König H (2015) Isolation of methanotrophic bacteria from termite gut. Microbiol Res 179:29–37

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro GF, Côrte-Real M, Johannson B (2006) Characterization of DNA damage in yeast apoptosis induced by hydrogen peroxide, acetic acid, and hyperosmotic shock. Mol Cell Biol 17:4584–4591

    Article  CAS  Google Scholar 

  • Ribot EM, Fitzgerald C, Kuboto K, Swaminathan B, Barrett TJ (2001) Rapid pulsed-field gel electrophoresis protocol for subtyping of Campylobacter jejuni. J Clin Microbiol 39:1889–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodas AM, Ferrer S, Pardo I (2003) 16S-ARDRA, a tool for identification of lactic acid bacteria isolated from grape must and wine. Syst Appl Microbiol 26:412–422

    Article  CAS  PubMed  Google Scholar 

  • Rodas AM, Ferrer S, Pardo I (2005) Polyphasic study of wine Lactobacillus strains: taxonomic implications. Int J Syst Evol Microbiol 55:197–207

    Article  CAS  PubMed  Google Scholar 

  • Röder C, König H, Fröhlich J (2007a) Species-specific identification of Dekkera/Brettanomyces yeasts by fluorescently labelled rDNA probes targeting the 26S rRNA. FEMS Yeast Res 7:1013–1026

    Article  PubMed  CAS  Google Scholar 

  • Röder C, von Walbrunn C, Fröhlich J (2007b) Detektion und Untersuchung der Verbreitung der Wein-relevanten Schädlingshefe Dekkera (Brettanomyces) bruxellensis in Rheinhessen. Deut Lebensm-Rundsch 103:353–359

    Google Scholar 

  • Ryan OW, Poddar S, Cate JH (2016) CRISPR-Cas9 genome engineering in Saccharomyces cerevisiae cells. Cold Spring Harb Protoc 6:pdb.prot086827

    Google Scholar 

  • Sato H, Yanagida F, Shinohara T, Suzuki M, Suzuki K, Yokotsuka K (2001) Intraspecific diversity of Oenococcus oeni isolated during wine-making in Japan. FEMS Microbiol Lett 202:109–114

    Article  CAS  PubMed  Google Scholar 

  • Scanes KT, Hohmann S, Prior BA (1998) Glycerol production by the yeast Saccharomyces cerevisiae and its relevance to wine: a review. S Afr J Enol Vitic 19:17–24

    CAS  Google Scholar 

  • Schütze K, Pösl H, Lahr G (1998) Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine. Cell Mol Biol 44:735–746

    PubMed  Google Scholar 

  • Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37:67–75

    Article  CAS  PubMed  Google Scholar 

  • Sebastian P, Herr P, Fischer U, König H (2011) Molecular identification of lactic acid bacteria occurring in must and wine. S Afr J Enol Vitic 32:300–309

    CAS  Google Scholar 

  • Sherman F (1973) Micromanipulator for yeast genetic studies. Appl Microbiol 26:829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson PJ, Stanton C, Fitzgerald GF, Ross RP (2002) Genomic diversity with the genus Pediococcus as revealed by randomly amplified polymorphic DNA PCR and pulsed-field gel electrophoresis. Appl Environ Microbiol 68:765–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson PJ, Fitzgerald GF, Stanton C, Ross RP (2006) Enumeration and identification of pediococci in powder-based products using selective media and rapid PFGE. J Microbiol Methods 64:120–125

    Article  CAS  PubMed  Google Scholar 

  • Skerman VBD (1968) A new type of micromanipulator and microforge. J Gen Microbiol 54:287–297

    Article  CAS  PubMed  Google Scholar 

  • Sly LI, Arunpairojana V (1987) Isolation of manganese-oxidizing Pedomicrobium cultures from water by micromanipulation. J Microbiol Methods 6:177–182

    Article  Google Scholar 

  • Spano G, Lonvaud-Funel A, Claisse O, Massa S (2007) In vivo PCR–DGGE analysis of Lactobacillus plantarum and Oenococcus oeni populations in red wine. Curr Microbiol 54:9–13

    Article  CAS  PubMed  Google Scholar 

  • Špirek M, Yang J, Groth C, Petersen RF, Langkjær Naumova ES, Sulo P, Naumov GI, Piškur J (2003) High-rate evolution of Saccharomyces sensu lato chromosomes. FEMS Yeast Res 3:363–373

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P, Maiden MC, Nesme X, Rossello-Mora R, Swings J, Trüper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047

    CAS  PubMed  Google Scholar 

  • Stantscheff R, Kuever J, Rabenstein A, Seyfarth K, Dröge S, König H (2014) Isolation and differentiation of methanogenic Archaea from mesophilic corn-fed on-farm biogas plants with special emphasis on the genus Methanobacterium. Appl Microbiol Biotechnol 98:5719–5735

    Article  CAS  PubMed  Google Scholar 

  • Stender H, Kurtzman C, Hyldig-Nielsen JJ, Sörensen D, Broomer A, Oliveira K, Peery-O’Keefe H, Sage A, Young B, Coull J (2001) Identification of Dekkera bruxellensis (Brettanomyces) from wine by fluorescence in situ hybridization using peptide nucleic acid probes. Appl Environ Microbiol 67:938–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel-electrophoresis – criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tenreiro R, Santos MA, Pavela H, Vleira G (1994) Inter-strain relationships among wine leuconostocs and their divergence from other Leuconostoc species, as revealed by low frequency restriction fragment analysis of genomic DNA. J Appl Bacteriol 77:271–280

    Article  CAS  PubMed  Google Scholar 

  • Thomsen TR, Nielsen JL, Ramsing NB, Nielsen PH (2004) Micromanipulation and further identification of FISH-labelled microcolonies of a dominant denitrifying bacterium in activated sludge. Environ Microbiol 6:470–479

    Article  CAS  PubMed  Google Scholar 

  • Thomsen R, Nielsen PS, Jensen TH (2005) Dramatically improved RNA in situ hybridization signals using LNA-modified probes. RNA 11:1745–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilloy V, Ortiz-Julien A, Dequin S (2014) Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions. Appl Environ Microbiol 80:2623–2632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ultee A, Wacker A, Kunz D, Löwenstein R, König H (2013) Microbiol succession in spontaneous fermented grape must before, during and after stuck fermentation. S Afr J Enol Vitic 34:68–78

    CAS  Google Scholar 

  • Urano N, Nomura M, Sahara H, Koshino S (1994) The use of flow cytometry and small-scale brewing in protoplast fusion: exclusion of undesired phenotypes in yeasts. Enzyme Microb Technol 16:839–843

    Article  Google Scholar 

  • Valero E, Schuller D, Combon B, Casal M, Dequin S (2005) Dissemination and survival of commercial wine yeast in the vineyard: a large-scale, three-years study. FEMS Yeast Res 5:959–969

    Article  CAS  PubMed  Google Scholar 

  • Valero E, Cambon B, Schuller D, Casal M, Dequin S (2007) Biodiversity of Saccharomyces yeast strains from grape berries of wine-producing areas using starter commercial yeasts. FEMS Yeast Res 7:317–329

    Article  CAS  PubMed  Google Scholar 

  • Vallejo I, Santos M, Cantoral JM, Collado IG, Rebordinos L (1996) Chromosomal polymorphism in Botrytis cinerea strains. Hereditas 124:31–38

    Article  Google Scholar 

  • Van Belkum A, Struelens M, De Visser A, Verbrugh H, Tibayrenc M (2001) Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology. Clin Microbiol Rev 14:547–560

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaughan-Martini A, Martini A, Cardinali G (1993) Electrophoretic karyotyping as a taxonomic tool in the genus Saccharomyces. Antonie Van Leeuwenhoek 63:145–156

    Article  CAS  PubMed  Google Scholar 

  • Versavaud A, Courcoux P, Roulland C, Dulau L, Hallet JN (1995) Genetic diversity and geographical distribution of wild Saccharomyces strains from wine-producing area of Charentes, France. Appl Environ Microbiol 61:3521–3529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner L, Lai E (1994) Separation of large DNS molecules with high voltage pulsed field gel electrophoresis. Electrophoresis 15:1078–1083

    Article  CAS  PubMed  Google Scholar 

  • Wang QM, Liu WQ, Liti G, Wang SA, Bai FY (2012) Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity. Mol Ecol 21:5404–5417

    Article  PubMed  Google Scholar 

  • Xufre A, Albergaria H, Inácio J, Spencer-Martins I, Girio F (2006) Application of fluorescence in situ hybridization (FISH) to the analysis of yeast population dynamics in winery and laboratory grape must fermentations. Int J Food Microbiol 108:376–384

    CAS  PubMed  Google Scholar 

  • Yanagihara K, Niki H, Baba T (2011) Direct PCR amplification of the 16S rRNA gene from single microbial cells isolated from an Antarctic iceberg using laser microdissection microscopy. Pol Sci 5:375–382

    Article  Google Scholar 

  • Zapparoli G, Torriani S, Dellaglio F (1998) Differentiation of Lactobacillus sanfranciscensis strains by randomly amplified polymorphic DNA and pulsed-field gel electrophoresis. FEMS Microbiol Lett 166:325–332

    Article  CAS  Google Scholar 

  • Zapparoli G, Reguant C, Bordons A, Torriani S, Dellaglio F (2000) Genomic DNA fingerprinting of Oenococcus oeni strains by pulsed-field gel electrophoresis and randomly amplified polymorphic DNA-PCR. Curr Microbiol 40:351–355

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Kuo-Kang L (2008) Optical tweezers for single cells. J R Soc Interface 5:671–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler A, Geiger KH, Ragoussis J, Szalay G (1987) A new electrophoresis apparatus for separating very large DNA molecules. J Clin Chem Clin Biochem 25:578

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Fröhlich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fröhlich, J., König, H., Claus, H. (2017). Molecular Methods for Identification of Wine Microorganisms and Yeast Development. In: König, H., Unden, G., Fröhlich, J. (eds) Biology of Microorganisms on Grapes, in Must and in Wine. Springer, Cham. https://doi.org/10.1007/978-3-319-60021-5_22

Download citation

Publish with us

Policies and ethics