Skip to main content

Stress Responses in Wine Yeast

  • Chapter
  • First Online:

Abstract

Saccharomyces cerevisiae is employed as pure starter cultures in industrial wine fermentations and usually within 2 days predominates in the must fermentations. Its physiology and genetics have been extensively studied and it serves as a model organism for all eukaryotes. In this chapter we will focus on the responses to different stresses the yeast encounters from its desiccation for distribution until the final stages of vinification. Stress signalling pathways explained in detail are those for response to high and low medium osmolarity (HOG and CWI), response to high temperatures, oxidative stress, and their interconnection with the general (environmental) stress response. These pathways are discussed regarding their relevance in vinification, followed by addressing more wine specific stress conditions, such as high ethanol concentration, nutrient limitations, acid stress, sulphite resistance, and cold stress. The chapter is concluded by a discussion of emerging issues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguilera F, Peinado RA, Millan C, Ortega JM, Mauricio JC (2006) Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int J Food Microbiol 110:34–42

    Article  CAS  PubMed  Google Scholar 

  • Aguilera J, Randez-Gil F, Prieto JA (2007) Cold response in Saccharomyces cerevisiae: new functions for old mechanisms. FEMS Microbiol Rev 31:327–341

    Article  CAS  PubMed  Google Scholar 

  • Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B (2001) Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett 498:98–103

    Article  CAS  PubMed  Google Scholar 

  • Aranda A, Jimenez-Marti E, Orozco H, Matallana E, Del Olmo M (2006) Sulfur and adenine metabolisms are linked, and both modulate sulfite resistance in wine yeast. J Agric Food Chem 54:5839–5846

    Article  CAS  PubMed  Google Scholar 

  • Attfield PV (1997) Stress tolerance: the key to effective strains of industrial baker’s yeast. Nat Biotechnol 15:1351–1357

    Article  CAS  PubMed  Google Scholar 

  • Branco P, Francisco D, Monteiro M, Almeida MG, Caldeira J, Arneborg N, Prista C, Albergaria H (2016) Antimicrobial properties and death-inducing mechanisms of saccharomycin, a biocide secreted by Saccharomyces cerevisiae. Appl Microbiol Biotechnol. doi:10.1007/s00253-016-7755-6 (E-pub)

  • Caspeta L, Castillo T, Nielsen J (2015) Modifying yeast tolerance to inhibitory conditions of ethanol production processes. Front Bioeng Biotechnol 3:Article 184. doi:10.3389/fbioe.2015.00184

    Article  PubMed  Google Scholar 

  • Charoenbhakdi S, Dokpikul T, Burphan T, Techo T, Auesukaree C (2016) Vacuolar H+-ATPase protects Saccharomyces cerevisiae cells against ethanol-induced oxidative and cell wall stresses. Appl Environ Microbiol 82:3121–3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Stabryla L, Wei N (2016) Improved acetic acid resistance in Saccharomyces cerevisiae by overexpression of the WHI2 gene identified through inverse metabolic engineering. Appl Environ Microbiol 82:2156–2166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Du Z, Zhu H, Guo X, He X (2016) Protective effects of arginine on Saccharomyces cerevisiae against ethanol stress. Sci Rep 6:31311. doi:10.1038/srep31311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciani M, Capece A, Comitini F, Canonico L, Siesto G, Romano P (2016) Yeast interactions in inoculated wine fermentation. Front Microbiol 7:555. doi:10.3389/fmicb.2016.00555

    PubMed  PubMed Central  Google Scholar 

  • de Lucena RM, Elsztein C, Barros de Souza R, de Barros Pita W, Paiva Sde S Jr, de Morais MA Jr (2015) Genetic interaction between HOG1 and SLT2 genes in signalling the cellular stress caused by sulphuric acid in Saccharomyces cerevisiae. J Mol Microbiol Biotechnol 25:423–427

    Article  PubMed  Google Scholar 

  • Deed RC, Deed NK, Gardner RC (2015) Transcriptional response of Saccharomyces cerevisiae to low temperature during wine fermentation. Antonie van Leeuwenhoeck 107:1029–1048

    Article  CAS  Google Scholar 

  • Divol B, du Toit M, Duckitt E (2012) Surviving in the presence of sulphur dioxide: strategies developed by wine yeasts. Appl Microbiol Biotechnol 95:601–613

    Article  CAS  PubMed  Google Scholar 

  • Fassler JS, West AH (2011) Fungal Skn7 stress responses and their relationship to virulence. Eukaryot Cell 10:156–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francois J, Parrou JL (2001) Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 25:125–145

    Article  CAS  PubMed  Google Scholar 

  • Gancedo C, Flores CL (2004) The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Res 4:351–359

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Rios E, Ramos-Alonso L, Guillamon JM (2016) Correlation between low temperature adaptation and oxidative stress in Saccharomyces cerevisiae. Front Microbiol 7:1199. doi:10.3389/fmicb.2016.01199

    Article  PubMed  PubMed Central  Google Scholar 

  • Guerreiro JF, Muir A, Ramachandran S, Thorner J, Sa-Correia I (2016) Sphingolipid biosynthesis upregulation by TOR Complex 2-Ypk1 signaling during yeast adaptive response to acetic acid stress. Biochem J. doi:10.1042/BCJ20160565 (E-pub ahead of print)

  • Herbert AP, Riesen M, Bloxam L, Kosmidou E, Wareing BM, Johnson JR, Phelan MM, Pennington SR, Lian LY, Morgan A (2012) NMR structure of Hsp12, a protein induced by and required for dietary restriction-induced lifespan extension in yeast. PLoS One 7:e41975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohmann S (2015) An integrated view on a eukaryotic osmoregulation system. Curr Genet 61:373–382

    Article  CAS  PubMed  Google Scholar 

  • Ivorra C, Perez-Ortin JE, del Olmo M (1999) An inverse correlation between stress resistance and stuck fermentations in wine yeasts. A molecular study. Biotechnol Bioeng 64:698–708

    Article  CAS  PubMed  Google Scholar 

  • Jacinto E, Lorberg A (2008) TOR regulation of AGC kinases in yeast and mammals. Biochem J 410:19–37

    Article  CAS  PubMed  Google Scholar 

  • Kapteyn JC, ter Riet B, Vink E, Blad S, De Nobel H, Van Den Ende H, Klis FM (2001) Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol Microbiol 39:469–479

    Article  CAS  PubMed  Google Scholar 

  • Kessi-Perez EI, Araos S, Garcia V, Salinas F, Abarca V, Larrondo LF, Martinez C, Cubillos FA (2016) RIM15 antagonistic pleiotropy is responsible for differences in fermentation and stress response kinetics in budding yeast. FEMS Yeast Res 16. doi:10.1093/femsyr/fow021 (E-pub)

  • Kock C, Dufrene YF, Heinisch JJ (2015) Up against the wall: is yeast cell wall integrity ensured by mechanosensing in plasma membrane microdomains? Appl Environ Microbiol 81:806–811

    Article  PubMed  PubMed Central  Google Scholar 

  • Levin DE (2011) Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189:1145–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lillie SH, Pringle JR (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol 143:1384–1394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marks VD, Ho Sui SJ, Erasmus D, van der Merwe GK, Brumm J, Wasserman WW, Bryan J, van Vuuren HJ (2008) Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response. FEMS Yeast Res 8:35–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsit S, Sanchez I, Galeote V, Dequin S (2016) Horizontally acquired oligopeptide transporters favour adaptation of Saccharomyces cerevisiae wine yeast to oenological environment. Environ Microbiol 18:1148–1161

    Article  CAS  PubMed  Google Scholar 

  • Morano KA, Grant CM, Moye-Rowley WS (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190:1157–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadai C, Treu L, Campanaro S, Giacomini A, Corich V (2016) Different mechanisms of resistance modulate sulfite tolerance in wine yeasts. Appl Microbiol Biotechnol 100:797–813

    Article  CAS  PubMed  Google Scholar 

  • Novo MT, Beltran G, Torija MJ, Poblet M, Rozes N, Guillamon JM, Mas A (2003) Changes in wine yeast storage carbohydrate levels during preadaptation, rehydration and low temperature fermentations. Int J Food Microbiol 86:153–161

    Article  CAS  PubMed  Google Scholar 

  • Perez-Ortin JE, Querol A, Puig S, Barrio E (2002) Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. Genome Res 12:1533–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Torrado R, Gimeno-Alcaniz JV, Matallana E (2002) Wine yeast strains engineered for glycogen overproduction display enhanced viability under glucose deprivation conditions. Appl Environ Microbiol 68:3339–3344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petitjean M, Teste MA, Francois JM, Parrou JL (2015) Yeast tolerance to various stresses relies on the trehalose-6P synthase (Tps1) protein, not on trehalose. J Biol Chem 290:16177–16190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petkova MI, Pujol-Carrion N, Arroyo J, Garcia-Cantalejo J, Angeles de la Torre-Ruiz M (2010) Mtl1 is required to activate general stress response through Tor1 and Ras2 inhibition under conditions of glucose starvation and oxidative stress. J Biol Chem 285:19521–19531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proft M, Mas G, de Nadal E, Vendrell A, Noriega N, Struhl K, Posas F (2006) The stress-activated Hog1 kinase is a selective transcriptional elongation factor for genes responding to osmotic stress. Mol Cell 23:241–250

    Article  CAS  PubMed  Google Scholar 

  • Rodicio R, Heinisch JJ (2013) Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis. Yeast 30:165–177

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Pena JM, Garcia R, Nombela C, Arroyo J (2010) The high-osmolarity glycerol (HOG) and cell wall integrity (CWI) signalling pathways interplay: a yeast dialogue between MAPK routes. Yeast 27:495–502

    Article  CAS  PubMed  Google Scholar 

  • Saito H, Posas F (2012) Response to hyperosmotic stress. Genetics 192:289–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schehl B, Senn T, Lachenmeier DW, Rodicio R, Heinisch JJ (2007) Contribution of the fermenting yeast strain to ethyl carbamate generation in stone fruit spirits. Appl Microbiol Biotechnol 74:843–850

    Article  CAS  PubMed  Google Scholar 

  • Schmitz HP, Jendretzki A, Wittland J, Wiechert J, Heinisch JJ (2015) Identification of Dck1 and Lmo1 as upstream regulators of the small GTPase Rho5 in Saccharomyces cerevisiae. Mol Microbiol 96:306–324

    Article  CAS  PubMed  Google Scholar 

  • Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648

    Article  CAS  PubMed  Google Scholar 

  • Stanley D, Chambers PJ, Stanley GA, Borneman A, Fraser S (2010) Transcriptional changes associated with ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 88:231–239

    Article  CAS  PubMed  Google Scholar 

  • Teixeira MC, Mira NP, Sa-Correia I (2011) A genome-wide perspective on the response and tolerance to food-relevant stresses in Saccharomyces cerevisiae. Curr Opin Biotechnol 22:150–156

    Article  CAS  PubMed  Google Scholar 

  • Varela JC, van Beekvelt C, Planta RJ, Mager WH (1992) Osmostress-induced changes in yeast gene expression. Mol Microbiol 6:2183–2190

    Article  CAS  PubMed  Google Scholar 

  • Verghese J, Abrams J, Wang Y, Morano KA (2012) Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 76:115–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson WA, Roach PJ, Montero M, Baroja-Fernandez E, Munoz FJ, Eydallin G, Viale AM, Pozueta-Romero J (2010) Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 34:952–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuzuarregui A, Monteoliva L, Gil C, del Olmo M (2006) Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation. Appl Environ Microbiol 72:836–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen J. Heinisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heinisch, J.J., Rodicio, R. (2017). Stress Responses in Wine Yeast. In: König, H., Unden, G., Fröhlich, J. (eds) Biology of Microorganisms on Grapes, in Must and in Wine. Springer, Cham. https://doi.org/10.1007/978-3-319-60021-5_16

Download citation

Publish with us

Policies and ethics