Skip to main content

Fading Scaffolds in STEM: Supporting Students’ Learning on Explanations of Natural Phenomena

  • Conference paper
  • First Online:
Book cover Advances in Human Factors in Training, Education, and Learning Sciences (AHFE 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 596))

Included in the following conference series:

Abstract

The development of skills for the explanation of science and natural phenomena is crucial for science education. In Chile, this is one of the most challenging learning goals for teachers and students. Supported by scaffolding theory, this article collects the experiences of applied research using fading scaffolds for developing children’s skills for constructing explanations of natural phenomena. The discussion supports scaffolding as a human process aided by strategically designed resources that can transform the learning experience of both an individual learner and a group of students. Taking into account the different types of scaffolds, we present guidelines for designing pedagogical scaffolding to construct explanations and following-up students’ thinking processes in STEM areas. Further research recommends including transference of these strategies to the teaching of other phenomena and school subjects, as well as new questions about fading scaffolds for supporting students’ learning and skill acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giere, R.N.: Explaining Science: A Cognitive Approach. University of Chicago Press, Chicago (1990)

    Google Scholar 

  2. Jorba, J., Gómez, I., Prat, A. (eds.): Hablar y Escribir para Aprender: Uso de la Lengua en Situación de Enseñanza-aprendizaje desde las Áreas Curriculares. Síntesis, Barcelona (2000)

    Google Scholar 

  3. Yao, J.X., Guo, Y.Y., Neumann, K.: Towards a hypothetical learning progression of scientific explanation. Asia Pac. Sci. Educ. 2(1), 4–20 (2016)

    Article  Google Scholar 

  4. Gunckel, K.L., Covitt, B.A., Salinas, I., Anderson, C.W.: A learning progression for water in socio-ecological systems. J. Res. Sci. Teach. 49(7), 843–868 (2012)

    Article  Google Scholar 

  5. Cabello, V.: Explanation construction of scientific phenomena: a study of teachers and their students. In: Lavonen, J., Juuti, K., Lampiselkä, J., Uitto A., Hahl, K. (eds.) Electronic Proceedings of the ESERA 2015 Conference. Science Education Research: Engaging Learners for a Sustainable Future, Part 16 (co-ed. Kariotoglou, P. and Russell, T.), pp. 2760–2769 (2016)

    Google Scholar 

  6. Gobierno de Chile: Bases Curriculares 2012 Ciencias Naturales Educación Básica. Ministerio de Educación, Santiago (2012)

    Google Scholar 

  7. NRC: A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. The National Academy Press, Washington, D.C. (2012)

    Google Scholar 

  8. Lead States: Next Generation Science Standards: For States, By States. Washington, DC: Achieve, Inc. On Behalf of the Twenty-six States and Partners that Collaborated on the NGSS (2013). http://www.nextgenscience.org/

  9. Ministry of Education, P. R. China: Middle School Science Curriculum Standard for Compulsory Education. Beijing Normal University Press, Beijing (2011)

    Google Scholar 

  10. OECD: PISA 2015 results in focus (2016). https://www.oecd.org/pisa/pisa-2015-results-in-focus.pdf

  11. Songer, N.B., Gotwals, A.W.: Guiding explanation construction by children at the entry points of learning progressions. J. Res. Sci. Teach. 49(2), 141–165 (2012)

    Article  Google Scholar 

  12. Gobierno de Chile: Informe Nacional Resultados PISA 2012. Ministerio de Educación, Santiago (2014)

    Google Scholar 

  13. Barrera, R., Jiménez, P.: Análisis de las Explicaciones Científicas del Estudiantado de Primero Medio Según el Sexo: Una Propuesta Coeducativa para la Enseñanza-aprendizaje del Comportamiento de la Luz en el Ojo Humano. Tesis de Licenciatura en Educación de Física y Matemática, Universidad de Santiago de Chile (2013)

    Google Scholar 

  14. Camacho, J.P., Jara, N., Morales, C., Rubio, N., Muñoz, T., Rodríguez, G.: Los Modelos Explicativos del Estudiantado acerca de la Célula Eucarionte Animal. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias 9(2), 196–212 (2012)

    Google Scholar 

  15. Thurston, A., Grant, G., Topping, K.J.: La Construcción de la Comprensión en Ciencias Naturales de Primaria: Una Exploración del Proceso y sus Resultados en los Contenidos de la Luz y la Tierra en el Espacio. Electron. J. Res. Educ. Psychol. 4(8), 1–34 (2006)

    Google Scholar 

  16. Charpak, G.: La Main à la Pâte. Flammarion, Paris (1996)

    Google Scholar 

  17. McNeill, K.L., Lizotte, D.J., Krajcik, J., Marx, R.W.: Supporting students’ construction of scientific explanations by fading scaffolds in instructional materials. J. Learn. Sci. 15(2), 153–191 (2006)

    Article  Google Scholar 

  18. Zangori, L., Forbes, C.T.: Preservice elementary teachers and explanation construction: knowledge-for-practice and knowledge-in-practice. Sci. Educ. 97(2), 310–330 (2013)

    Article  Google Scholar 

  19. Sanmartí, N.: Hablar, Leer y Escribir para Aprender Ciencia. In: Fernández, P. (ed.) La Competencia en Comunicación Lingüística en las Áreas del Currículo, pp. 103–128. MEC, Madrid (2007)

    Google Scholar 

  20. Meneses, A., Montenegro, M., Ruiz, M.: Textos Escolares para Aprender Ciencias: Habilidades, Contenidos y Lenguaje Académico. In: Centro de Estudios Ministerio de Educación (ed.) Evidencias Para Políticas Públicas en Educación: Selección de investigaciones sexto concurso FONIDE, pp. 233–277. Mineduc, Santiago (2014)

    Google Scholar 

  21. Roth, K.J.: Developing meaningful conceptual understanding in science. In: Fly Jones, B., Idol, L. (eds.) Dimensions of Thinking and Cognitive Instruction, pp. 139–175. Lawrence Erlbaum Associates, Hillsdale (1990)

    Google Scholar 

  22. Ruiz Primo, M.A., Li, M., Tsai, S.P., Schneider, J.: Testing one premise of scientific inquiry in science classrooms: examining students’ scientific explanations and student learning. J. Res. Sci. Teach. 47(5), 583–608 (2010)

    Google Scholar 

  23. Arzola, N., Muñoz, T., Rodríguez, G., Camacho, J.: Importancia de los Modelos Explicativos en el Aprendizaje de la Biología. Revista Ciencia Escolar: Enseñanza y Modelización. 1, 7–16 (2011)

    Google Scholar 

  24. Leymonié-Sáenz, J.: Aportes para la Enseñanza de las Ciencias Naturales. Unesco, Santiago (2009)

    Google Scholar 

  25. Driver, R., Guesne, E., Tiberghien, A.: Ideas Científicas en la Infancia y la Adolescencia, vol. 8. Morata, Madrid (1999)

    Google Scholar 

  26. Limon, M., Carretero, M.: Las Ideas Previas de los Alumnos, ¿Qué Aporta este Enfoque a la Enseñanza de las Ciencias? In: Carretero, M. (ed.) Construir y Enseñar las Ciencias Experimentales, pp. 19–46. Aique, Buenos Aires (1997)

    Google Scholar 

  27. Eberbach, C., Crowley, K.: From every day to scientific observation: how children learn to observe the biologist’s world. Rev. Educ. Res. 79(1), 39–68 (2009)

    Article  Google Scholar 

  28. Legare, C.H.: The contributions of explanation and exploration to children’s scientific reasoning. Child. Dev. Perspect. 8(2), 101–106 (2014)

    Article  Google Scholar 

  29. Leuchter, M., Saalbach, H., Hardy, I.: Designing science learning in the first years of schooling. An intervention study with sequenced learning material on the topic of ‘Floating and Sinking’. Int. J. Sci. Educ. 36(10), 1751–1771 (2014)

    Article  Google Scholar 

  30. Pozo, J.I.: Ni Cambio ni Conceptual. La Reconstrucción del Conocimiento Científico como un Cambio Representacional. In: Pozo, J.I., Flores, F. (eds.) Cambio Conceptual y Representacional en el Aprendizaje y la Enseñanza de la Ciencia, pp. 73–90. Antonio Machado, Madrid (2007)

    Google Scholar 

  31. Hernández-Torres, C., Hernández-Abenza, L.M.: La Competencia Lingüística como Eje Clave para el Aprendizaje de las Ciencias en Educación Primaria: Aplicación al Caso de Mezclas Cotidianas. Educación Química 25, 176–182 (2014)

    Article  Google Scholar 

  32. Lee, H.S., Songer, N.B.: Expanding an understanding of scaffolding theory using an inquiry-fostering science program (2004). http://www.biokids.umich.edu/papers/56LeeSongerScaffolding.pdf

  33. Hammond, J., Gibbons, P.: What is scaffolding? In: Hammond, J. (ed.) Scaffolding: Teaching and Learning in Language and Literacy Education, pp. 8–16. Primary, Sydney (2001)

    Google Scholar 

  34. Wood, D., Bruner, J.S., Ross, G.: The role of tutoring in problem solving. J. Child Psychol. Psyc. 17, 89–100 (1976)

    Article  Google Scholar 

  35. Mercer, N.: Neo-Vygotskian theory and classroom education. In: Steirer B., Maybin, J. (eds.) Language, Literacy and Learning in Educational Practice. Multilingual Matters, Clevedon, Avon (1994)

    Google Scholar 

  36. van de Pol, J., Volman, M., Beishuizen, J.: Scaffolding in teacher-student interaction: a decade of research. Educ. Psychol. Rev. 22, 271–296 (2010)

    Article  Google Scholar 

  37. Vygotsky, L.S.: Thought and Language. MIT Press, Cambridge (1986)

    Google Scholar 

  38. Hsu, Y.S., Lai, T.L., Hsu, W.H.: A design model of distributed scaffolding for inquiry-based learning. Res. Sci. Educ. 45, 241–273 (2014)

    Article  Google Scholar 

  39. McNeill, K.L., Krajcik, J.: Synergy between teacher practices and curricular scaffolds to support students in using domain-specific and domain-general knowledge in writing arguments to explain phenomena. J. Learn. Sci. 18(3), 416–460 (2009)

    Article  Google Scholar 

  40. Kirschner, P.A., Sweller, J., Clark, R.E.: Why minimal guidance during instruction does not work: an analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educ. Psychol. 41(2), 75–86 (2006)

    Article  Google Scholar 

  41. Márquez, C., Roca, M.: Plantear Preguntas: Un Punto de Partida para Aprender Ciencias. Revista Educación y Pedagogía 18(45), 61–71 (2009)

    Google Scholar 

  42. Quintanilla, M., Orellana, M.L., Daza, S.: La Ciencia en las Primeras Edades como Promotora de Habilidades de Pensamiento Científico. In: Daza, S., Quintanilla, M. (eds.) La Enseñanza de las Ciencias Naturales en las Primeras Edades: Su contribución a la Promoción de Competencias de Pensamiento Científico, vol. 5, pp. 59–82. Litodigital, Santiago (2011)

    Google Scholar 

  43. Fiore, E., Leymonié, J.: Didáctica Práctica para Enseñanza Media y Superior. Magró, Montevideo (2007)

    Google Scholar 

  44. Driver, R., Newton, P., Osborne, J.: Establishing the norms of scientific argumentation in classrooms. Sci. Educ. 84, 287–312 (2000)

    Article  Google Scholar 

  45. Jiménez-Aleixandre, M.P., Erduran, S.: Argumentation in science education: an overview. In: Jiménez-Aleixandre, M.P., Erduran, S. (eds.) Argumentation in Science Education: Perspectives from Classroom-Based Research, pp. 47–70. Springer, Dordrecht (2008)

    Google Scholar 

  46. Schwarz, B.: Argumentation and learning. In: Muller-Mirza, N., Perret-Clermont, A.N. (eds.) Argumentation and Education, pp. 91–126. Springer, New York (2009)

    Chapter  Google Scholar 

  47. Wilhelm, A.G., Munter, C., Jackson, K.: Examining relations between teachers’ explanations of sources of students’ difficulty in mathematics and students’ opportunities to learn. ESJ 117(3), 345–370 (2017)

    Google Scholar 

Download references

Acknowledgements

Funding from CONICYT_PAI, Program for Returning Researchers from Abroad, call 2013 grant number 821320002 and PIA-CONICYT Basal Funds for Centers of Excellence Project FB0003 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria M. Cabello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Cabello, V.M., Sommer Lohrmann, M.E. (2018). Fading Scaffolds in STEM: Supporting Students’ Learning on Explanations of Natural Phenomena. In: Andre, T. (eds) Advances in Human Factors in Training, Education, and Learning Sciences. AHFE 2017. Advances in Intelligent Systems and Computing, vol 596. Springer, Cham. https://doi.org/10.1007/978-3-319-60018-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60018-5_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60017-8

  • Online ISBN: 978-3-319-60018-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics