Skip to main content

A Comparison of Virtual Reality-Based Psychomotor Task Training with Visual and Haptic Aiding

  • Conference paper
  • First Online:
Advances in Human Factors in Training, Education, and Learning Sciences (AHFE 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 596))

Included in the following conference series:

Abstract

The objective of this research was to compare learning effects of motor and cognitive skill training with three types of virtual reality (VR) simulation. The VR simulations included haptic (guidance forces), visual (attentional cues) and a combination of haptic and visual assistance designed to accelerate training. The results of the experiment revealed that conditions providing haptic assistance (alone and in combination with visual aids) provided more cognitive skill training than the visual-only aiding condition. Similarly, the visual condition resulted in better training of fine motor skill than the haptic condition. The combination condition led to some of the smallest training effects. The present investigation incorporating healthy participants was designed as part of an ongoing research effort to provide insight for the design of VR simulations to support rehabilitation of motor skills among disabled populations or training of new skills for occupational tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holden, M.K.: Virtual environments for motor rehabilitation: review. Cyberpsychol. Behav. 8(3), 187–211 (2005). discussion 212

    Article  Google Scholar 

  2. Holden, M.K., Dyar, T.A., Dayan-Cimadoro, L.: Telerehabilitation using a virtual environment improves upper extremity function in patients with stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 15(1), 36–42 (2007)

    Article  Google Scholar 

  3. Jang, S.H., You, S.H., Hallett, M., Cho, Y.W., Park, C.M., Cho, S.H., Lee, H.Y., Kim, T.H.: Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: an experimenter-blind preliminary study. Arch. Phys. Med. Rehabil. 86(11), 2218–2223 (2005)

    Article  Google Scholar 

  4. Ku, J., Mraz, R., Baker, N., Zakzanis, K.K., Lee, J.H., Kim, I.Y., Kim, S.I., Graham, S.J.: A data glove with tactile feedback for FMRI of virtual reality experiments. Cyberpsychol. Behav. 6(5), 497–508 (2003)

    Article  Google Scholar 

  5. Merians, A.S.: Virtual reality-augmented rehabilitation for patients following stroke. Phys. Ther. 82(9), 898 (2002)

    Google Scholar 

  6. Wiederhold, B.K., Wiederhold, M.D.: The future of cybertherapy: improved options with advanced technologies. Stud. Health Technol. Inf. 99, 263 (2004)

    Google Scholar 

  7. You, S.H., Jang, S.H., Kim, Y.H., Hallett, M., Ahn, S.H., Kwon, Y.H., Kim, J.H., Lee, M.Y.: Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study. Stroke 36(6), 1166–1171 (2005)

    Article  Google Scholar 

  8. Li, Y., Kaber, D.B., Lee, Y.S., Tupler, L.: Haptic-based virtual environment design and modeling of motor skill assessment for brain injury patients rehabilitation. Comput. Aided Des. Appl. 8(2), 149–162 (2010)

    Article  Google Scholar 

  9. Jeon, W., Clamann, M., Zhu, B., Gil, G.H., Kaber, D.B.: Usability evaluation of a virtual reality system for motor skill training. In: Proceedings of the 2012 Applied Human Factors and Ergonomics Conference (CD-ROM). Taylor & Francis CRC Press, Boca Raton, FL (2012)

    Google Scholar 

  10. Winstein, C., Pohl, P., Lewthwaitek, R.: Effects of physical guidance and knowledge of results on motor learning: support for the guidance hypothesis. Res. Q. Exerc. Sport 65(4), 316–323 (1994)

    Article  Google Scholar 

  11. Kaber, D.B., Tupler, L., Clamann, M., Gil, G.H., Zhu, B., Swangnetr, M., Jeon, W., Zhang, Y., Qin, X., Ma, W., Lee, Y.S.: Evaluation of an augmented virtual reality and haptic control interface for psychomotor training. Assistive Technol. 26(1), 51–60 (2014)

    Article  Google Scholar 

  12. PsychCorp: Wechsler Abbreviated Scale of Intelligence (WASI) Manual. Pearson Education, Inc. (1999)

    Google Scholar 

  13. Forsyth, B., MacLean, K.: Predictive haptic guidance: intelligent user assistance for the control of dynamic tasks. IEEE Trans. Visual Comput. Graphics 12(1), 103–113 (2006)

    Article  Google Scholar 

  14. Kucukyilmaz, A., Sezgin, T., Basdogan, C.: Intention recognition for dynamic role exchange in haptic collaboration. IEEE Trans. Haptics 6(1), 58–68 (2013)

    Article  Google Scholar 

  15. Lee, H., Choi, S.: Combining haptic guidance and haptic disturbance: an initial study of hybrid haptic assistance for virtual steering task. In: Haptics Symposium (HAPTICS). IEEE (2014)

    Google Scholar 

  16. Ernst, M., Martin, S.: Banks: humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870), 429–433 (2002)

    Article  Google Scholar 

  17. Feygin, D., Keehner, M., Tendick, R.: Haptic guidance: experimental evaluation of a haptic training method for a perceptual motor skill. In: Proceedings of 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS 2002), pp. 40–47, Orlando, FL (2002)

    Google Scholar 

  18. Liu, J., Cramer, S.C., Reinkensmeyer, D.J.: Learning to perform a new movement with robotic assistance: comparison of haptic guidance and visual demonstration. J. Neuro Eng. Rehabil. 3, 20 (2006)

    Article  Google Scholar 

  19. Osterreith, P.A.: The complex figure copy test. Psychol. Examination Trauma. Encephalopathy 30, 206–356 (1944)

    Google Scholar 

  20. Rey, A.: L’examen psychologique dans le cas d’encephalopathie traumatique. Psychol. Examination Trauma. Encephalopathy 28, 286–340 (1941)

    Google Scholar 

  21. Wechsler, D.: WAIS-III Administration and Scoring Manual. The Psychological Corporation, Sanantonio, TX (1997)

    Google Scholar 

  22. Basdogan, C., Kiraz, A., Bukusoglu, I., Varol, A., Doğanay, S.: Haptic guidance for improved task performance in steering microparticles with optical tweezers. Opt. Express 15(18), 11616–11621 (2007)

    Article  Google Scholar 

  23. Oldfield, R.C.: The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–114 (1971)

    Article  Google Scholar 

  24. Ozcan, A., Tulum, Z., Pinar, L., Baskurt, F.: Comparison of pressure pain threshold, grip strength, dexterity and touch pressure of dominant and nondominant hands within and between right-and left-handed subjects. J. Med. Sci. 19, 874–878 (2004)

    Google Scholar 

  25. Sainburg, R., Kalakanis, D.: Differences in control of limb dynamics during dominant and nondominant arm reaching. J. Neurophysiol. 83, 2661–2675 (2000)

    Google Scholar 

  26. Yamashita, H.: Right-and left-hand performance on the Rey-Osterrieth complex figure: a preliminary study in nonclinical sample of right handed people. Arch. Clin. Neuropsychol. Official J. Nat. Acad. Neuropsychol. 25(4), 314–317 (2010)

    Article  Google Scholar 

  27. Wilk, M.B.: Probability plotting methods for the analysis of data. Biometrika 55(1), 1–17 (1968)

    Google Scholar 

  28. Davidan, M.: General Linear Models for Longitudinal Data. In: Fitzmaurice, G., Davidan, M., Verbeke, G., Molenberghs, G. (eds.) Longitudinal Data Analysis, pp. 208–308. Chapman and Hall/CRC, Boca Raton, FL (2008)

    Google Scholar 

  29. Schmidt, R.: Frequent augmented feedback can degrade learning: evidence and interpretations. In: Requin, J., Stelmach, G.E. (eds.) Tutorials in Motor Neuroscience, pp. 59–75. Kluwer Academic, Norwell (1991)

    Chapter  Google Scholar 

  30. Schmidt, R., Wulf, G.: Continuous concurrent feedback degrades skill learning: implications for training and simulation. Hum. Factors 39(4), 509–525 (1997)

    Article  Google Scholar 

  31. Clamann, M., Kaber, D.B.: The effects of haptic and visual aiding on psychomotor task strategy development during virtual reality-based training. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting (CD-ROM) (2012)

    Google Scholar 

  32. Guadagnoli, M.A., Lee, T.D.: Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J. Mot. Behav. 36(2), 212–224 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the National Science Foundation (NSF) (No. IIS-0905505) to North Carolina State University. The technical monitor was Ephraim Glinert. The views and opinions expressed on all pages are those of the authors and do not necessarily reflect the views of the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqi Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Ma, W. et al. (2018). A Comparison of Virtual Reality-Based Psychomotor Task Training with Visual and Haptic Aiding. In: Andre, T. (eds) Advances in Human Factors in Training, Education, and Learning Sciences. AHFE 2017. Advances in Intelligent Systems and Computing, vol 596. Springer, Cham. https://doi.org/10.1007/978-3-319-60018-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60018-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60017-8

  • Online ISBN: 978-3-319-60018-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics