Skip to main content

Complex Networks

  • Chapter
  • First Online:
Evolutionary Computation and Complex Networks

Abstract

Complex systems are characterized by a level of nonlinear coupling among system components. A graph representation in general, and complex networks in specific, have been extensively used for understanding complex systems. In this chapter, we offer a gentle introduction to complex networks, a discussion of their properties and metrics to measure these properties, and algorithms for network generation that could be used to generate synthetic networks with real-world or theoretical properties. We then introduce a variety of evolutionary algorithms where each individual in a population inhibits a node in a complex network. This representation limits the other individuals that each individual is allowed to interact with. This localized interaction warrants a discussion on the selection pressure that each network topology implicitly imposes on its population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks (1999)

    Google Scholar 

  2. Barabási, A.L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks (1999)

    Article  Google Scholar 

  3. Blum, A., Chan, T.H., Rwebangira, M.R.: A random-surfer web-graph model. In: 2006 Proceedings of the Third Workshop on Analytic Algorithmics and Combinatorics (ANALCO), pp. 238–246. SIAM (2006)

    Google Scholar 

  4. Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6) (2004)

    Google Scholar 

  5. Erdős, P., Rényi, A.: On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl 5, 17–61 (1960)

    Google Scholar 

  6. González, M.C., Lind, P.G., Herrmann, H.J.: System of mobile agents to model social networks. Phys. Rev. Lett. 96(8) (2006)

    Google Scholar 

  7. Hansen, T.F.: Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. Biosystems 69(2), 83–94 (2003)

    Article  Google Scholar 

  8. Humphries, M.D., Gurney, K.: Network small-world-ness: a quantitative method for determining canonical network equivalence. PloS one 3(4) (2008). (DOI e0002051)

    Article  Google Scholar 

  9. Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3(3), 318–356 (1961)

    Article  Google Scholar 

  10. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic models for the web graph. In: Proceedings of 41st Annual Symposium on Foundations of Computer Science, 2000, pp. 57–65. IEEE (2000)

    Google Scholar 

  11. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 177–187. ACM (2005)

    Google Scholar 

  12. Newman, M.E.: Mixing patterns in networks. Phys. Rev. E 67(2) (2003)

    Google Scholar 

  13. Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2) (2004)

    Google Scholar 

  14. Newman, M.E., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64(2) (2001)

    Google Scholar 

  15. Pastor-Satorras, R., Vázquez, A., Vespignani, A.: Dynamical and correlation properties of the internet. Phys. Rev. Lett. 87(25) (2001). (DOI 258701)

    Google Scholar 

  16. Pennock, D.M., Flake, G.W., Lawrence, S., Glover, E.J., Giles, C.L.: Winners don’t take all: characterizing the competition for links on the web. Proc. Natl. Acad. Sci. 99(8), 5207–5211 (2002)

    Article  Google Scholar 

  17. Pimm, S.L.: Food Webs, pp. 1–11 (1982)

    Chapter  Google Scholar 

  18. Travers, J., Milgram, S.: The small world problem. Phychol. Today 1(1), 61–67 (1967)

    Google Scholar 

  19. Wagner, A.: Does evolutionary plasticity evolve? Evolution 50(3), 1008–1023 (1996)

    Article  Google Scholar 

  20. Wagner, G.P., Altenberg, L.: Perspective: complex adaptations and the evolution of evolvability. Evolution 50(3), 967–976 (1996)

    Article  Google Scholar 

  21. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications, vol. 8 (1994)

    Google Scholar 

  22. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., Abbass, H.A., Tan, K.C. (2019). Complex Networks. In: Evolutionary Computation and Complex Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-60000-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60000-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59998-4

  • Online ISBN: 978-3-319-60000-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics