Skip to main content

Kinematic and Dynamic Modeling of a Multifunctional Rehabilitation Robot UHP

  • Conference paper
  • First Online:
New Trends in Medical and Service Robots (MESROB 2016)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 48))

Included in the following conference series:

Abstract

The design of a suitable controller that handles robot-human interaction is one of the critical tasks in rehabilitation robotics. For this purpose, an accurate model of the robot is required. The Universal Haptic Pantograph (UHP) is a novel upper limb rehabilitation robot that can be configured to perform arm or wrist exercises. This work is focused on the latter, solving the kinematic model by the use of the closure loop equations, while Lagrangian formulation is used to estimate the interaction force. In order to prove the effectiveness of the model, several experimental tests are carried out. Results demonstrate that the mean motion error is less than 1 mm, and the estimated force error less than \(10\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babaiasl, M., Mahdioun, S.H., Jaryani, P., Yazdani, M.: A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disabil. Rehabil. Assist. Technol. 1–18 (2015). doi:10.3109/17483107.2014.1002539

  2. Carignan, C., Tang, J., Roderick, S.: Development of an exoskeleton haptic interface for virtual task training. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) 2009, 3697–3702 (2009). doi:10.1109/IROS.2009.5354834

    Google Scholar 

  3. Corbyn, Z.: A growing global burden. Nat. 510(7506), S2–S3 (2014). doi:10.1038/510S2a

    Google Scholar 

  4. Gopura, R.A.R.C., Kiguchi, K., Li, Y.: SUEFUL-7: a 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control. IEEE Int. Conf. Intell. Robots Syst. 1126–1131 (2009). doi:10.1109/IROS.2009.5353935

  5. Harwin, W.S., Patton, J.L., Edgerton, V.R.: Challenges and opportunities for robot-mediated neurorehabilitation. Proc. IEEE 94(9), 1717–1726 (2006). doi:10.1109/JPROC.2006.880671

    Article  Google Scholar 

  6. Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A., Leonhardt, S.: A survey on robotic devices for upper limb rehabilitation. J. Neuroeng. Rehabil. 11(3), 1–29 (2014). doi:10.1186/1743-0003-11-3

    Google Scholar 

  7. Oblak, J., Matjačić, Z.: Design of a series visco-elastic actuator for multi-purpose rehabilitation haptic device. J. Neuroeng. Rehabil. 8:3(1), 1–13 (2011). DOI 10.1186/1743-0003-8-3

    Google Scholar 

  8. Perry, J.C., Oblak, J., Jung, J.H., Cikajlo, I., Veneman, J.F., Goljar, N., Bizoviar, N., Matjai, Z., Keller, T.: Variable structure pantograph mechanism with spring suspension system for comprehensive upper-limb haptic movement training. J. Rehabil. Res. Dev. 48(4), 317–334 (2011). doi:10.1682/JRRD.2010.03.0043

    Article  Google Scholar 

  9. Rahman, M.H., Ouimet, T.K., Saad, M., Kenné, J.P.: Development and control of a wearable robot for rehabilitation of elbow and shoulder joint movements. IEEE Ind. Electron. Soc. 1506–1511 (2010). doi:10.1109/IECON.2010.5675459

  10. Sawaki, L.: Use-dependent plasticity of the human motor cortex in health and disease. IEEE Eng. Med. Biol. Mag. 24(1), 36–39 (2005). doi:10.1109/MEMB.2005.1384098

    Article  Google Scholar 

  11. Song, Z., Zhang, S., Gao, B.: Implementation of resistance training using an upper-limb exoskeleton rehabilitation device for elbow joint. J. Med. Biol. Eng. 34(2), 188–196 (2014). doi:10.5405/jmbe.1337

    Article  Google Scholar 

  12. Stienen, A.H.A., Hekman, E.E.G., Ter Braak, H., Aalsma, A.M.M., Van Der Helm, F.C.T., Van Der Kooij, H.: Design of a rotational hydro-elastic actuator for an active upper-extremity rehabilitation exoskeleton. 881– 888 (2008). doi:10.1109/BIOROB.2008.4762873

  13. Thrift, A.G., Cadilhac, D.A., Thayabaranathan, T., Howard, G., Howard, V.J., Rothwell, P.M., Donnan, G.A.: Global stroke statistics. Int. J. Stroke 9, 6–18 (2014). doi:10.1111/ijs.12245

    Article  Google Scholar 

  14. Vertechy, R., Frisoli, A., Dettori, A., Solazzi, M., Bergamasco, M.: Development of a new exoskeleton for upper limb rehabilitation. IEEE Int. Conf. Rehabil. Robot. (ICORR) 2009, 188–193 (2009). doi:10.1109/ICORR.2009.5209502

    Google Scholar 

  15. Wen, Y., Rosen, J., Li, X.: PID admittance control for an upper limb exoskeleton. IEEE Am. Control Conf. 1124–1129 (2011). doi:10.1109/ACC.2011.5991147

  16. Wernholt, E.: Nonlinear identification of a physically parameterized robot model. SYSID 143–148 (2006). doi:10.3182/20060329-3-AU-2901.00016

  17. Zhou, S.H., Fong, J., Crocher, V., Tan, Y., Oetomo, D., Mareels, I.: Learning control in robot-assisted rehabilitation of motor skills a review. J. Control Decis. 7706, 1–25 (2016). doi:10.1080/23307706.2015.1129295

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Basque Country Governments (GV/EJ) under grant PRE-2014-1-152, UPV/EHU’s UFI11/28 project, Spanish Ministry of Economy and Competitiveness’ MINECO & FEDER inside the DPI-2012-32882 project, Spanish Ministry of Economy and Competitiveness’ BES-2013-066142 grant, Euskampus, FIK and Spanish Ministry of Science and Innovation PDI-020100-2009-21 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zubizarreta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Mancisidor, A., Zubizarreta, A., Cabanes, I., Bengoa, P., Jung, J.H. (2018). Kinematic and Dynamic Modeling of a Multifunctional Rehabilitation Robot UHP. In: Husty, M., Hofbaur, M. (eds) New Trends in Medical and Service Robots. MESROB 2016. Mechanisms and Machine Science, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-319-59972-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59972-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59971-7

  • Online ISBN: 978-3-319-59972-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics