Skip to main content

The Role of Technology in the Implementation and Learning of Minimally-Invasive Surgery

  • Conference paper
  • First Online:
New Trends in Medical and Service Robots (MESROB 2016)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 48))

Included in the following conference series:

Abstract

The assimilation of the surgical techniques by the resident doctors should not affect patients’ safety. Practicing certain surgical gestures in a repetitive manner allows a better understanding of the technique and the correct acquisition of the manual skills. The use of simulators as a part of the training programs has considerably reduced the number of surgical errors and has improved the operative time and the quality of robotic and laparoscopic surgical procedures. The latest technologies, like 3D vision, next generation instruments, the use of intraoperative imaging have enabled the development of minimally-invasive surgery, so that a number of laparoscopic and robotic procedures have become the standard of care. Our objective was to evaluate the manner in which the latest technologies influence the development of minimally invasive surgery (laparoscopic and robotic). Also, we assessed the main parameters that influence the learning curve of these two types of minimally invasive approach. We observed that the use of the robotic platform during the learning curve allows the performance of laparoscopic procedures with the same accuracy, but with much lower costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abboudi, H., Khan, M.S., Aboumarzouk, O., Guru, K.A., Challacombe, B., Dasgupta, P., Ahmed, K.: Current status of validation for robotic surgery simulators—a systematic review. BJU Int. 111(2), 194–205 (2013)

    Article  Google Scholar 

  2. Al-Kadi, A.S., Donnon, T.: Using simulation to improve the cognitive and psychomotor skills of novice students in advanced laparoscopic surgery: a meta-analysis. Med. Teach. 35(Suppl 1), S47–55 (2013).

    Google Scholar 

  3. Alenezi, A.N., Karim, O.: Role of intra-operative contrast-enhanced ultrasound (CEUS) in robotic-assisted nephron-sparing surgery. J. Robot. Surg. 9(1), 1–10 (2015)

    Article  Google Scholar 

  4. Angell, J., Gomez, M.S., Baig, M.M., Abaza, R.: Contribution of laparoscopic training to robotic proficiency. J. Endourol. 27(8), 1027–1031 (2013)

    Article  Google Scholar 

  5. Arichi, N., Mitsui, Y., Ogawa, K., Nagami, T., Nakamura, S., Hiraoka, T., et al.: Intraoperative fluorescence vascular imaging using indocyanine green for assessment of transplanted kidney perfusion. Transp. Proc. 46, 342–345 (2014)

    Article  Google Scholar 

  6. Aykan, S., Singhal, P., Nguyen, D.P., Yigit, A., Tuken, M., Yakut, E., et al.: Perioperative, pathologic, and early continence outcomes comparing three-dimensional and two-dimensional display systems for laparoscopic radical prostatectomy–a retrospective, single-surgeon study. J. Endourol. 28(5), 539–543 (2014)

    Article  Google Scholar 

  7. Benway, B.M., Bhayani, S.B., Rogers, C.G., Dulabon, L.M., Patel, M.N., Lipkin, M., et al.: Robot assisted partial nephrectomy versus laparoscopic partial nephrectomy for renal tumors: a multi-institutional analysis of perioperative outcomes. J. Urol. 182, 866–872 (2009)

    Article  Google Scholar 

  8. Birkett, D.H., Josephs, L.G., Ese-McDonald, J.: A new 3-D laparoscope in gastrointestinal surgery. Surg. Endosc. 8, 1448–1451 (1994)

    Article  Google Scholar 

  9. Borofsky, M.S., Gill, I.S., Hemal, A.K., Marien, T.P., Jayaratna, I., Krane, L.S., et al.: Near-infrared fluorescence imaging to facilitate super-selective arterial clamping during zeroischaemia robotic partial nephrectomy. BJU Int. 111, 604–610 (2013)

    Article  Google Scholar 

  10. Byrn, J.C., Schluender, S., Divino, C.M., Conrad, J., Gurland, B., Shlasko, E., et al.: Three-dimensional imaging improves surgical performance for both novice and experienced operators using the da Vinci robot system. Am. J. Surg. 193(4), 519–522 (2007)

    Article  Google Scholar 

  11. Chandra, V., Nehra, D., Parent, R., Woo, R., Reyes, R., Hernandez-Boussard, T., et al.: A comparison of laparoscopic and robotic assisted suturing performance by experts and novices. Surgery 147(6), 830–839 (2010)

    Article  Google Scholar 

  12. Corker, H.P., Singh, P., Sodergren, M.H., Balaji, S., Kwasnicki, R.M., Darzi, A.W., et al.: A randomized controlled study to establish the effect of articulating instruments on performance in single-incision laparoscopic surgery. J. Surg. Educ. 72(1), 1–7 (2015)

    Article  Google Scholar 

  13. Daskalaki, D., Aguilera, F., Patton, K., Giulianotti, P.C.: Fluorescence in robotic surgery. J. Surg. Oncol. 112(3), 250–256 (2015)

    Article  Google Scholar 

  14. Daskalaki, D., Fernandes, E., Wang, X., Bianco, F.M., Elli, E.F., Ayloo, S., et al.: Indocyanine green (ICG) fluorescent cholangiography during robotic cholecystectomy: results of 184 consecutive cases in a single institution. Surg. Innov. 21, 615–621 (2014)

    Article  Google Scholar 

  15. Gómez-Gómez, E., Carrasco-Valiente, J., Valero-Rosa, J., Campos-Hernández, J.P., Anglada-Curado, F.J., Carazo-Carazo, J.L., et al.: Impact of 3D vision on mental workload and laparoscopic performance in inexperienced subjects. Actas Urol. Esp. 39(4), 229–235 (2015)

    Article  Google Scholar 

  16. Islam, A.: Early surgeon impressions and technical difficulty associated with laparoendoscopic single-site surgery: a Society of American Gastrointestinal and Endoscopic Surgeons learning center study. Surg. Endosc. 25(8), 2597–2603 (2011)

    Article  Google Scholar 

  17. Jafari, M.D., Lee, K.H., Halabi, W.J., Mills, S.D., Carmichael, J.C., Stamos, M.J., et al.: The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery. Surg. Endosc. 27, 3003–3008 (2013)

    Article  Google Scholar 

  18. Klein, M.I., Warm, J.S., Riley, M.A., Matthews, G., Doarn, C., Donovan, J.F., Gaitonde, K.: Mental workload and stress perceived by novice operators in the laparoscopic and robotic minimally invasive surgical interfaces. J. Endourol. 26(8), 1089–1094 (2012)

    Article  Google Scholar 

  19. Lee, G.I., Lee, M.R., Clanton, T., Sutton, E., Park, A.E., Marohn, M.R.: Comparative assessment of physical and cognitive ergonomics associated with robotic and traditional laparoscopic surgeries. Surg. Endosc. 28(2), 456–465 (2014)

    Article  Google Scholar 

  20. Leite, M., Carvalho, A.F., Costa, P., Pereira, R., Moreira, A., Rodrigues, N., et al.: Assessment of laparoscopic skills performance: 2D versus 3D vision and classic instrument versus new hand-held robotic device for laparoscopy. Surg. Innov. 23(1), 52–61 (2016)

    Article  Google Scholar 

  21. Leong, F., Garbin, N., Di Natali, C., Mohammadi, A., Thiruchelvam, D., Oetomo, D., et al.: Magnetic surgical instruments for robotic abdominal surgery. IEEE Rev. Biomed. Eng. (2016) [Epub ahead of print]

    Google Scholar 

  22. Letouzey, V., Huberlant, S., Faillie, J.L., Prudhomme, M., Mares, P., de Tayrac, R.: Evaluation of a laparoscopic training program with or without robotic assistance. Eur. J. Obstet. Gynecol. Reprod. Biol. 181, 321–327 (2014)

    Article  Google Scholar 

  23. Manny, T.B., Hemal, A.K.: Fluorescence-enhanced robotic radical cystectomy using unconjugated indocyanine green for pelvic lymphangiography, tumor marking, and mesenteric angiography: the initial clinical experience. Urology 83, 824–829 (2014)

    Article  Google Scholar 

  24. Manny, T.B., Pompeo, A.S., Hemal, A.K.: Robotic partial adrenalectomy using indocyanine green dye with near-infrared imaging: the initial clinical experience. Urology 82, 738–742 (2013)

    Article  Google Scholar 

  25. Martinec, D.: The trade-off between flexibility and maneuverability: task performance with articulating laparoscopic instruments. Surg. Endosc. 23(12), 2697–2701 (2009)

    Article  Google Scholar 

  26. McVey, R., Goldenberg, M., Bernardini, M., Yasufuku, K., Quereshy, F., Finelli, A., et al.: Baseline laparoscopic skill may predict baseline robotic skill and early robotic surgery learning curve. J. Endourol. (2016) [Epub ahead of print]

    Google Scholar 

  27. Moore, L.J., Wilson, M.R., Waine, E., McGrath, J.S., Masters, R.S., Vine, S.J.: Robotically assisted laparoscopy benefits surgical performance under stress. J. Robot Surg. 9(4), 277–284 (2015)

    Article  Google Scholar 

  28. Mottrie, A., De Naeyer, G., Schatteman, P., Carpentier, P., Sangalli, M., Ficarra, V.: Impact of the learning curve on perioperative outcomes in patients who underwent robotic partial nephrectomy for parenchymal renal tumours. Eur. Urol. 58, 127–132 (2010)

    Article  Google Scholar 

  29. Nagendran, M., Gurusamy, K.S., Aggarwal, R., Loizidou, M., Davidson, B.R.: Virtual reality training for surgical trainees in laparoscopic surgery. Cochrane Database Syst. Rev. 8, CD006575 (2013)

    Google Scholar 

  30. Payne, T.N., Dauterive, F.R.: A comparison of total laparoscopic hysterectomy to robotically assisted hysterectomy: surgical outcomes in a community practice. J. Minim. Invasive Gynecol. 15(3), 286–291 (2008)

    Article  Google Scholar 

  31. Peitgen, K., Walz, M.V., Holtmann, G., Eigler, F.W.: A prospective randomized experimental evaluation of three-dimensional imaging in laparoscopy. Gastrointest. Endosc. 44, 262–267 (1996)

    Article  Google Scholar 

  32. Rossi, E.C., Ivanova, A., Boggess, J.F.: Robotically assisted fluorescence-guided lymph node mapping with ICG for gynecologic malignancies: a feasibility study. Gynecol. Oncol. 124, 78–82 (2012)

    Article  Google Scholar 

  33. Schols, R.M., Bouvy, N.D., van Dam, R.M., Stassen, L.P.: Advanced intraoperative imaging methods for laparoscopic anatomy navigation: an overview. Surg. Endosc. 27(6), 1851–1859 (2013)

    Article  Google Scholar 

  34. Schols, R.M., Connell, N.J., Stassen, L.P.: Near-infrared fluorescence imaging for real-time intraoperative anatomical guidance in minimally invasive surgery: a systematic review of the literature. World J. Surg. 39(5), 1069–1079 (2015)

    Article  Google Scholar 

  35. Stefanidis, D., Wang, F., Korndorffer Jr., J.R., Dunne, J.B., Scott, D.J.: Robotic assistance improves intracorporeal suturing performance and safety in the operating room while decreasing operator workload. Surg. Endosc. 24(2), 377–382 (2010)

    Article  Google Scholar 

  36. Szeto, G.P., Cheng, S.W., Poon, J.T., Ting, A.C., Tsang, R.C., Ho, P.: Surgeons’ static posture and movement repetitions in open and laparoscopic surgery. J. Surg. Res. 172, e19–e31 (2012)

    Article  Google Scholar 

  37. Tanagho, Y.S., Andriole, G.L., Paradis, A.G., Madison, K.M., Sandhu, G.S., Varela, J.E., et al.: 2D versus 3D visualization: impact on laparoscopic proficiency using the fundamentals of laparoscopic surgery skill set. J. Laparoendosc. Adv. Surg. Tech. A 22(9), 865–870 (2012)

    Article  Google Scholar 

  38. Tang, F.J., Qi, L., Jiang, H.C., Tong, S.Y. and Li, Y.: Comparison of the clinical effectiveness of 3D and 2D imaging systems for laparoscopic radical cystectomy with pelvic lymph node dissection. J. Int. Med. Res. (2016) [Epub ahead of print]

    Google Scholar 

  39. Tobis, S., Knopf, J.K., Silvers, C., Messing, E., Yao, J., Rashid, H., et al.: Robot-assisted and laparoscopic partial nephrectomy with near infrared fluorescence imaging. J. Endourol. Soc. 26, 797–802 (2012)

    Article  Google Scholar 

  40. Wenzl, R., Lehner, R., Vry, U., Pateisky, N., Sevelda, P., Husslein, P.: Three-dimensional video endoscopy: clinical use in gynecological laparoscopy. Lancet 344, 1621–1622 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

This paper was realized within the Partnership Programme in priority domains—PN-II, which runs with the financial support of MEN-UEFISCDI, Project no. 247/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Andraş .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Crişan, N., Andraş, I., Coman, I. (2018). The Role of Technology in the Implementation and Learning of Minimally-Invasive Surgery. In: Husty, M., Hofbaur, M. (eds) New Trends in Medical and Service Robots. MESROB 2016. Mechanisms and Machine Science, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-319-59972-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59972-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59971-7

  • Online ISBN: 978-3-319-59972-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics