Skip to main content

Towards a Fractal Cohomology: Spectra of Polya–Hilbert Operators, Regularized Determinants and Riemann Zeros

  • Chapter
  • First Online:
Exploring the Riemann Zeta Function

Abstract

Emil Artin defined a zeta function for algebraic curves over finite fields and made a conjecture about them analogous to the famous Riemann hypothesis. This and other conjectures about these zeta functions would come to be called the Weil conjectures, which were proved by Weil in the case of curves and eventually, by Deligne in the case of varieties over finite fields. Much work was done in the search for a proof of these conjectures, including the development in algebraic geometry of a Weil cohomology theory for these varieties, which uses the Frobenius operator on a finite field. The zeta function is then expressed as a determinant, allowing the properties of the function to relate to the properties of the operator. The search for a suitable cohomology theory and associated operator to prove the Riemann hypothesis has continued to this day. In this paper we study the properties of the derivative operator \(D = \frac{d} {dz}\) on a particular family of weighted Bergman spaces of entire functions on \(\mathbb{C}\). The operator D can be naturally viewed as the “infinitesimal shift of the complex plane” since it generates the group of translations of \(\mathbb{C}\). Furthermore, this operator is meant to be the replacement for the Frobenius operator in the general case and is used to construct an operator associated with any given meromorphic function. With this construction, we show that for a wide class of meromorphic functions, the function can be recovered by using a regularized determinant involving the operator constructed from the meromorphic function. This is illustrated in some important special cases: rational functions, zeta functions of algebraic curves (or, more generally, varieties) over finite fields, the Riemann zeta function, and culminating in a quantized version of the Hadamard factorization theorem that applies to any entire function of finite order. This shows that all of the information about the given meromorphic function is encoded into the special operator we constructed. Our construction is motivated in part by work of Herichi and the second author on the infinitesimal shift of the real line (instead of the complex plane) and the associated spectral operator, as well as by earlier work and conjectures of Deninger on the role of cohomology in analytic number theory, and a conjectural “fractal cohomology theory” envisioned in work of the second author and of Lapidus and van Frankenhuijsen on complex fractal dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Artin, Quadratische Körper im gebiet der höheren Kongruenzen, I and II. Math. Zeitschr. 19, 153–206, 207–246 (1924)

    Article  MATH  Google Scholar 

  2. A. Atzmon, B. Brive, Surjectivity and invariant subspaces of differential operators on weighted Bergman spaces of entire functions, in Contemporary Mathematics, ed. by A. Borichev, H. Hedenmalm, K. Zhu, vol. 404 (American Mathematical Society, Providence, 2006), pp. 27–39

    Google Scholar 

  3. M.V. Berry, The Bakerian lecture: quantum chaology. Proc. R. Soc. A 413, 183–198 (1987)

    Article  MathSciNet  Google Scholar 

  4. M.V. Berry, J.P. Keating, The Riemann zeros and eigenvalue asymptotics. SIAM Rev. 41, 236–266 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Cobler, M.L. Lapidus, Zeta functions and Weierstrass’ factorization theorem via regularized determinants and infinitesimal shifts in weighted Bergman spaces (in preparation, 2017)

    Google Scholar 

  6. A. Connes, Trace formula in noncommutative geometry and the zeros of the Riemann zeta function. Sel. Math., New Ser. 5, 29–106 (1999)

    Google Scholar 

  7. J.B. Conway, Functions of One Complex Variable. Graduate Texts in Mathematics, vol. 11, 2nd ed. (Springer, New York, 1995)

    Google Scholar 

  8. P. Deligne, La conjecture de Weil: I. Publ. Math. l’IHÉS 43, 273–307 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Deligne, La conjecture de Weil: II. Publ. Math. l’IHÉS 52, 137–252 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Deninger, Evidence for a cohomological approach to analytic number theory, in First European Congress of Mathematics, ed. by A. Joseph, F. Mignot, F. Murat, B. Prum, R. Rentschler. Progress in Mathematics, vol. 3 (Birkhäuser, Basel, 1994), pp. 491–510

    Google Scholar 

  11. C. Deninger, Some analogies between number theory and dynamical systems on foliated spaces, in Proceedings of International Congress of Mathematicians (Berlin, 1998), vol. I (1998), pp. 163–186. Documenta Math. J. DMV (Extra Volume ICM 98)

    Google Scholar 

  12. J. Dieudonné, On the history of the Weil conjectures. Math. Intell. 10, 7–21 (1975)

    MATH  Google Scholar 

  13. H.M. Edwards, Riemann’s Zeta Function, Dover edn. (Dover Publications, Mineola, 2001)

    MATH  Google Scholar 

  14. A. Grothendieck, The cohomology theory of abstract algebraic varieties, in Proceedings of International Congress of Mathematicians (Edinburgh, 1958) (Cambridge University Press, New York, 1960), pp. 103–118

    Google Scholar 

  15. A. Grothendieck, Formule de Lefschetz et rationalité des fonctions l. Séminaire N. Bourbaki Exp. 279, 41–55 (1964/1966)

    Google Scholar 

  16. A. Grothendieck, Standard conjectures on algebraic cycles, in Algebraic Geometry (Internationlal Colloquium, Tata Institute of Fundamental Research, Bombay, 1968) (1969), pp. 193–199

    Google Scholar 

  17. S. Haran, The Mysteries of the Real Prime. London Mathematical Society Monographs, New Series, vol. 25 (Oxford Science Publications, Oxford University Press, Oxford, 2001)

    Google Scholar 

  18. H. Hasse, Abstrakte Begründung der komplexen Multiplikation und Riemannsche Vermutung in Funktionenkörpern. Anh. Math. Sem. Hamburg 10, 325–348 (1934)

    Article  MATH  Google Scholar 

  19. H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman Spaces. Graduate Texts in Mathematics, vol. 199 (Springer, New York, 2000)

    Google Scholar 

  20. H. Herichi, M.L. Lapidus, Riemann zeros and phase transitions via the spectral operator on fractal strings. J. Phys. A Math. Theor. 45, 374005 (23 pp.) (2012)

    Google Scholar 

  21. H. Herichi, M.L. Lapidus, Fractal Complex Dimensions, Riemann Hypothesis and Invertibility of the Spectral Operator. Contemporary Mathematics, vol. 600 (American Mathematical Society, Providence, 2013), pp. 51–89

    Google Scholar 

  22. H. Herichi, M.L. Lapidus, Truncated infinitesimal shifts, spectral operators and quantized universality of the Riemann zeta function. Ann. Fac. Sci. Toulouse Math. 23(3), 621–664 (2014) [Special issue dedicated to Christophe Soulé on the occasion of his 60th birthday]

    Google Scholar 

  23. H. Herichi, M.L. Lapidus, Quantized Number Theory, Fractal Strings and the Riemann Hypothesis: From Spectral Operators to Phase Transitions and Universality. Research Monograph (World Scientific, Singapore and London, 2017) approx. 360 pp.

    Google Scholar 

  24. N. Katz, An overview of Deligne’s proof of the Riemann hypothesis for varieties over finite fields, in Proceedings of Symposia Pure Mathematics, vol. 28 (American Mathematical Society, Providence, 1976), pp. 275–305

    Google Scholar 

  25. M.L. Lapidus, In Search of the Riemann Zeros: Strings, Fractal Membranes and Noncommutative Spacetimes (American Mathematical Society, Providence, 2008)

    Book  MATH  Google Scholar 

  26. M.L. Lapidus, Towards quantized number theory: spectral operators and an asymmetric criterion for the Riemann hypothesis. Philos. Trans. R. Soc. A 373(2047), 24 pp. (2015)

    Google Scholar 

  27. M.L. Lapidus, H. Maier, The Riemann hypothesis and inverse spectral problems for fractal strings. J. Lond. Math. Soc. 52(1), 15–34 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. M.L. Lapidus, M. van Frankenhuijsen, Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings. Springer Monographs in Mathematics (Springer, New York, 2013). Second revised and enlarged edition of the 2006 edition

    Google Scholar 

  29. F. Oort, The Weil conjectures. Nw. Archief v. Wiskunde 5 Ser. 15(3), 211–219 (2014)

    Google Scholar 

  30. S.J. Patterson, An Introduction to the Theory of the Riemann Zeta-Function (Cambridge University Press, Cambridge, 1988)

    Book  MATH  Google Scholar 

  31. B. Riemann, Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. Monatsb. der Berliner Akad. 671–680 (1858/1860)

    Google Scholar 

  32. W. Rudin, Functional Analysis, 2nd edn. (McGraw Hill, New York, 1991)

    MATH  Google Scholar 

  33. P. Sarnak, L-functions, in Proceedings of the International Congress of Mathematicians, vol. I, Berlin (1998), pp. 453–465. Documenta Math. J. DMV (Extra Volume ICM 98)

    Google Scholar 

  34. F.K. Schmidt, Analytische Zahlentheorie in Körpern der Charakteristik p. Math. Zeitschr. 33, 1–32 (1931)

    Google Scholar 

  35. B. Simon, Notes on infinite determinants of Hilbert space operators. Adv. Math. 24, 244–273 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  36. B. Simon, Trace Ideals and Their Applications. Mathematical Surveys and Monographs, vol. 120, 2nd edn. (American Mathematical Society, Providence, 2005)

    Google Scholar 

  37. E.C. Titchmarsh, The Theory of the Riemann Zeta Function. Oxford Mathematical Monographs, 2nd edn. (Oxford University Press, Oxford, 1986) (revised by D.R. Heath-Brown)

    Google Scholar 

  38. A. Weil, Sur les fonctions algébriques à corps de constantes fini. C. R. Acad. Sci. Paris 210, 592–594 (1940)

    MathSciNet  MATH  Google Scholar 

  39. A. Weil, On the Riemann hypothesis in function fields. Proc. Natl. Acad. Sci. USA 27, 345–347 (1941)

    Article  MATH  Google Scholar 

  40. A. Weil, Numbers of solutions of equations in finite fields. Bull. Am. Math. Soc. 55, 497–508 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Weil, Abstract versus classical algebraic geometry, in Proceedings of the International Congress of Mathematicians (Amsterdam, 1954), vol. III (Noordhoff, Groningen, and North-Holland, Amsterdam, 1956), pp. 550–558

    Google Scholar 

  42. A. Weil, Sur les formules explicites de la théorie des nombres. Izv. Mat. Nauk (Ser. Mat.) 36, 3–18 (1972)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of Michel L. Lapidus was supported by the US National Science Foundation (NSF) under the grant DMS-1107750.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel L. Lapidus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cobler, T., Lapidus, M.L. (2017). Towards a Fractal Cohomology: Spectra of Polya–Hilbert Operators, Regularized Determinants and Riemann Zeros. In: Montgomery, H., Nikeghbali, A., Rassias, M. (eds) Exploring the Riemann Zeta Function. Springer, Cham. https://doi.org/10.1007/978-3-319-59969-4_3

Download citation

Publish with us

Policies and ethics