Skip to main content

Explorations in the Theory of Partition Zeta Functions

  • Chapter
  • First Online:
Exploring the Riemann Zeta Function

Abstract

We introduce and survey results on two families of zeta functions connected to the multiplicative and additive theories of integer partitions. In the case of the multiplicative theory, we provide specialization formulas and results on the analytic continuations of these “partition zeta functions,” find unusual formulas for the Riemann zeta function, prove identities for multiple zeta values, and see that some of the formulas allow for p-adic interpolation. The second family we study was anticipated by Manin and makes use of modular forms, functions which are intimately related to integer partitions by universal polynomial recurrence relations. We survey recent work on these zeta polynomials, including the proof of their Riemann Hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is a slight renormalization of the period polynomials considered in references such as [15, 32, 38, 50].

References

  1. K. Alladi, P. Erdős, On an additive arithmetic function. Pac. J. Math. 71(2), 275–294 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Andrews, The Theory of Partitions. Reprint of the 1976 original. Cambridge Mathematical Library (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  3. L. Berger, An introduction to the theory of p-adic representations, in Geometric Aspects of Dwork Theory I (Walter de Gruyter, Berlin, 2004), pp. 255–292

    MATH  Google Scholar 

  4. A. Besser, H. Furusho, The double shuffle relations for p-adic multiple zeta values, Primes and knots. Contemp. Math 416, 9–29 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Bey, M. Henk, J. Wills, Notes on the roots of Ehrhart polynomials. Discrete Comput. Geom. 38, 81–98 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Bloch, K. Kato, L-Functions and Tamagawa Numbers of Motives. Grothendieck Festschrift, vol. 1 (Birkhäuser, Basel, 1990), pp. 333–400

    Google Scholar 

  7. S. Bloch, A. Okounkov, The character of the infinite wedge representation. Adv. Math. 149(1), 1–60 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Borwein, D. Bradley, Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k. The Wilf Festschrift (Philadelphia, PA, 1996). Electron. J. Combin. 4(2), Research Paper 5 (1997)

    Google Scholar 

  9. J. Borwein, W. Zudilin, Multiple zeta values (2011). https://carma.newcastle.edu.au/MZVs/

  10. B. Braun, Norm bounds for Ehrhart polynomial roots. Discrete Comput. Geom. 39(1–3), 191–191 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. J.H. Bruinier, W. Kohnen, K. Ono, The arithmetic of the values of modular functions and the divisors of modular forms. Compos. Math. 140, 552–566 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Chamberland, A. Straub, On gamma quotients and infinite products. Adv. Appl. Math. 51(5), 546–562 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Chamberland, C. Johnson, A. Nadeau, B. Wu, Multiplicative partitions. Electron. J. Combin. 20(2), Paper 57 (2013)

    Google Scholar 

  14. W.Y. Chen, On the polynomials with all their zeros on the unit circle. J. Math. Anal. Appl. 190, 714–724 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. Choie, Y.K. Park, D. Zagier, Periods of modular forms on Γ 0(N) and products of Jacobi theta functions (preprint)

    Google Scholar 

  16. J.B. Conrey, D.W. Farmer, O. Imamoğlu, The nontrivial zeros of period polynomials of modular forms lie on the unit circle. Int. Math. Res. Not. 2013(20), 4758–4771 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Ding, L. Feng, W. Liu, A combinatorial identity of multiple zeta values with even arguments. Electron. J. Combin. 21(2), Paper 2.27 (2014)

    Google Scholar 

  18. N. Dummigan, Congruences of modular forms and Selmer groups. Math. Res. Lett. 8, 479–494 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. W. Dunham, Euler: The Master of Us All. The Dolciani Mathematical Expositions, vol. 22 (Mathematical Association of America, Washington, DC, 1999)

    Google Scholar 

  20. H.M. Edwards, Riemann’s Zeta Function. Reprint of the 1974 original (Dover Publications, Mineola, NY, 2001)

    Google Scholar 

  21. A. El-Guindy, W. Raji, Unimodularity of zeros of period polynomials of Hecke eigen forms. Bull. Lond. Math. Soc. 46(3), 528–536 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. F. Faà di Bruno, Sullo sviluppo delle funzioni. Ann. Sci. Matematiche e Fisiche 6, 479–480 (1855)

    Google Scholar 

  23. N.J. Fine, Basic Hypergeometric Series and Applications. With a foreword by George E. Andrews. Mathematical Surveys and Monographs, vol. 27 (American Mathematical Society, Providence, RI, 1988)

    Google Scholar 

  24. E.M. Friedlander, D.R. Grayson, Handbook ofK-Theory (Springer, New York, 2000)

    Google Scholar 

  25. H. Furusho, p-Adic multiple zeta values I – p-adic multiple polylogarithms and the p-adic KZ equation. Invent. Math. 155(2), 253–286 (2004)

    Google Scholar 

  26. P. Gunnells, F. Rodriguez-Villegas, Lattice polytopes, Hecke operators, and the Ehrhart polynomial. Sel. Math., New Ser. 13, 253–276 (2007)

    Google Scholar 

  27. M. Hoffman, Multiple harmonic series. Pac. J. Math. 152(2), 275–290 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Hoffman, Multiple zeta values (2012). http://www.usna.edu/Users/math/meh/mult.html

  29. K. Ihara, M. Kaneko, D. Zagier, Derivation and double shuffle relations for multiple zeta values. Compos. Math. 142, 307–338 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Jin, W. Ma, K. Ono, K. Soundararajan, The Riemann hypothesis for period polynomials of modular forms. Proc. Natl. Acad. Sci. USA 113(10), 2603–2608 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Knopfmacher, M.E. Mays, Compositions with m distinct parts. Ars Combinatoria 53, 111–128 (1999)

    MathSciNet  MATH  Google Scholar 

  32. W. Kohnen, D. Zagier, Modular forms with rational periods, Modular forms (Durham, 1983), Ellis Horwood Series in Mathematics and Its Applications Statistics and Operations Research (Horwood, Chichester, 1984), pp. 197–249

    Google Scholar 

  33. T. Kubota, H.-W. Leopoldt, Eine p-adische Theorie der Zetawerte. I. Einführung der p-adischen Dirichletschen L-Funktionen. J. Reine Angew. Math. 214/215, 328–339 (1964)

    Google Scholar 

  34. P. MacMahon, Dirichlet series and the theory of partitions. Proc. Lond. Math. Soc. S2–22(1), 404–411 (1924)

    Article  MathSciNet  MATH  Google Scholar 

  35. Y.I. Manin, Local zeta factors and geometries under SpecZ. Izv. Russian Acad. Sci. (Volume dedicated to J.-P. Serre), arXiv:1407.4969, 80, 751–758 (2016)

    Google Scholar 

  36. NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/. Release 1.0.6 of 2013-05-06

  37. K. Ono, L. Rolen, F.E. Sprung, Zeta-polynomials for modular form periods. Adv. Math. 306, 328–343 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. V. Paşol, A. Popa, Modular forms and period polynomials. Proc. Lond. Math. Soc. (3) 107(4), 713–743 (2013)

    Google Scholar 

  39. G. Pólya, Über die Nullstellen gewisser ganzer Funktionen [On the zeros of certain entire functions]. Math. Zeit. 2, 353–383 (1918) [German]

    Google Scholar 

  40. F. Rodriguez-Villegas, On the zeros of certain polynomials. Proc. Am. Math. Soc. 130(5), 2251–2254 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  41. R.P. Schneider, Partition zeta functions, Preprint (2015)

    Google Scholar 

  42. T. Scholl, Motives for modular forms. Inventiones 100, 419–430 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Subbarao, Product partitions and recursion formulae. Int. J. Math. Math. Sci. 2004(33–36), 1725–1735 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. G. Szegö, Inequalities for the zeros of Legendre polynomials and related functions. Trans. Am. Math. Soc. 39(1), 1–17 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  45. H. Tsumura, Combinatorial relations for Euler-Zagier sums. Acta Arith. 111, 27–42 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. J.-L. Waldspurger, Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie. Compos. Math. 54, 173–242 (1985)

    MATH  Google Scholar 

  47. E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, 4th edn. (Cambridge University Press, Cambridge, 1927)

    MATH  Google Scholar 

  48. J. Wrench, Concerning two series for the gamma function. Math. Comput. 22, 617–626 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  49. D. Zagier, Hecke operators and periods of modular forms, in Festschrift in Honor of I. I. Piatetski-Shapiro on the Occasion of his Sixtieth Birthday, Part II (Ramat Aviv, 1989). Israel Mathematical Conference Proceedings, vol. 3 (Weizmann, Jerusalem, 1990), pp. 321–336

    Google Scholar 

  50. D. Zagier, Periods of modular forms and Jacobi theta functions. Invent. Math. 104, 449–465 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  51. D. Zagier, Multiple zeta values (1995, manuscript in preparation)

    Google Scholar 

  52. D. Zagier, Evaluation of the multiple zeta values ζ(2, , 2, 3, 2, , 2), Ann. Math. (2) 175(2), 977–1000 (2012)

    Google Scholar 

  53. D. Zagier, Partitions, quasi-modular forms, and the Bloch–Okounkov theorem. Preprint (2015)

    Google Scholar 

  54. A. Zaharescu, M. Zak, On the parity of the number of multiplicative partitions. Acta Arith. 145(3), 221–232 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Armin Straub for useful discussion on the history of Theorem 5. Ken Ono is supported by National Science Foundation and the Asa Griggs Candler Fund. Larry Rolen thanks the support of the DFG and the University of Cologne postdoc program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Ono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ono, K., Rolen, L., Schneider, R. (2017). Explorations in the Theory of Partition Zeta Functions. In: Montgomery, H., Nikeghbali, A., Rassias, M. (eds) Exploring the Riemann Zeta Function. Springer, Cham. https://doi.org/10.1007/978-3-319-59969-4_10

Download citation

Publish with us

Policies and ethics