Skip to main content

Designing Parity Preserving Reversible Circuits

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10301))

Abstract

With the emergence of reversible circuits as an energy-efficient alternative of classical circuits, ensuring fault tolerance in such circuits becomes a very important problem. Parity-preserving reversible logic design is one viable approach towards fault detection. Interestingly, most of the existing designs are ad hoc, based on some pre-defined parity preserving reversible gates as building blocks. In the current work, we propose a systematic approach towards parity preserving reversible circuit design. We prove a few theoretical results and present two algorithms, one from reversible specification to parity preserving reversible specification and another from irreversible specification to parity preserving reversible specification. We derive an upper-bound for the number of garbage bits for our algorithm and perform its complexity analysis. We also evaluate the effectiveness of our approach by extensive experimental results and compare with the state-of-the-art practices. To our knowledge, this is the first work towards systematic design of parity preserving reversible circuit and more research is needed in this area to make this approach more scalable.

The original version of this chapter was revised: Table 2 was corrected. An erratum to this chapter can be found at 10.1007/978-3-319-59936-6_20

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Azad Khan, M.H.: Design of full-adder with reversible gates. In: International Conference on Computer and Information Technology, pp. 515–519 (2002)

    Google Scholar 

  2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bérut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.: Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012)

    Article  Google Scholar 

  4. Dastan, F., Haghparast, M.: A novel nanometric fault tolerant reversible divider. Int. J. Phys. Sci. 6(24), 5671–5681 (2011)

    Google Scholar 

  5. https://github.com/cchandak/parity_preserving_rev_ckt

  6. Golubitsky, O., Falconer, S.M., Maslov, D.: Synthesis of the optimal 4-bit reversible circuits. In: Proceedings of DAC, pp. 653–656 (2010)

    Google Scholar 

  7. Grosse, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact multiple-control toffoli network synthesis with SAT techniques. IEEE TCAD 28(5), 703–715 (2009)

    Google Scholar 

  8. Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic circuits. IEEE TCAD 25(11), 2317–2330 (2006)

    Google Scholar 

  9. Grosse, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact multiple-control tooli network synthesis With SAT techniques. IEEE TCAD 28(5), 703–715 (2009). doi:10.1109/TCAD.2009.2017215

    Google Scholar 

  10. Hung, W.N.N., Xiaoyu, S., Guowu, Y., Jin, Y., Perkowski, M.: Optimal synthesis of multiple output boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE TCAD 25(9), 1652–1663 (2006)

    Google Scholar 

  11. Islam, M.S., Rahman, M.M., Begum, Z., Hafiz, A., Al Mahmud, A.: Synthesis of fault tolerant reversible logic circuits. In: Proceedings of IEEE Circuits and Systems International Conference on Testing and Diagnosis, pp. 1–4 (2009)

    Google Scholar 

  12. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  13. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic synthesis. In: Proceedings of DAC, pp. 318–323 (2003)

    Google Scholar 

  14. Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for multiple-control toffolli gates. In: Proceedings of International Symposium on Multiple-Valued Logic, pp. 288–293 (2011)

    Google Scholar 

  15. Mishchenko, A., Perkowski, M., Fast heuristic minimization of exclusive-sums-of-products. In: Proceedings of the Reed-Muller Workshop, pp. 242–250 (2001)

    Google Scholar 

  16. Maslov, D.: Reversible Benchmarks. http://webhome.cs.uvic.ca/~dmaslov, Accessed Jun 2013

  17. Nayeem, N.M., Rice, J.E.: Online testable approaches in reversible logic. J. Electron. Test. 29(6), 763–778 (2013)

    Article  Google Scholar 

  18. Nashiry, M.A., Bhaskar, G.G., Rice, J.E.: Online testing for three fault models in reversible circuits. In: Proceedings of ISMVL, pp. 8–13 (2011). doi:10.1109/ISMVL.2015.36

  19. Parhami, B.: Parity-preserving transformations in computer arithmetic. In: Proceeding of SPIE, vol. 4791, pp. 403–411 (2002)

    Google Scholar 

  20. Parhami, B.: Fault-tolerant reversible circuits. In: Proceeding of 40th Asilomar Conference Signals, Systems, and Computers, Pacific Grove, CA, pp. 1726–1729, October 2006

    Google Scholar 

  21. Przigoda, N., Dueck, G.W., Wille, R., Drechsler, R.: Fault detection in parity preserving reversible circuits. In: Proceeding of IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL), Sapporo, Japan, pp. 44–49, 18–20 May 2016

    Google Scholar 

  22. Polian, I., Fiehn, T., Becker, B., Hayes, J.P.: A family of logical fault models for reversible circuits. In: Proceedings of Asian Test Symposium, pp. 422–427 (2011)

    Google Scholar 

  23. Qi, X., Chen, F., Zuo, K., Guo, L., Luo, Y., Hu, M.: Design of fast fault tolerant reversible signed multiplier. Int. J. Phys. Sci. 7(17), 2506–2514 (2012)

    Google Scholar 

  24. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits - a survey. In: CoRR abs/1110.2574, http://arxiv.org/abs/1110.2574 (2011)

  25. Saligram, R., Hegde, S.S., Kulkarni, S.A., Bhagyalakshmi, H.R., Venkatesha, M.K.: Design of fault tolerant reversible multiplexer based multi-boolean function generator using parity preserving gates. Int. J. Comput. Appl. 66(19), 20–24 (2013)

    Google Scholar 

  26. Saligram, R., Hegde, S.S., Kulkarni, S.A., Bhagyalakshmi, H.R., Venkatesha, M.K.: Design of parity preserving logic based fault tolerant reversible arithmetic logic unit. In: CoRR abs/1307.3690, http://arxiv.org/abs/1307.3690 (2013)

  27. Syal, N., Sinha, H.P., Sheenu: Comparison of different type parity preserving reversible gates and simple reversible gates. In: International Journal of Research and Innovation in Computer Engineering, vol. 1, issue 1 (2011)

    Google Scholar 

  28. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: a toolkit for reversible circuit design. In: Proceedings of Workshop on Reversible Computation, pp. 64–76 (2011)

    Google Scholar 

  29. Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of reversible circuits with minimal lines for large functions. In: Proceedings of ASP-DAC, pp. 85–92 (2012). doi:10.1109/ASPDAC.2012.6165069

  30. Soeken, M., Chattopadhyay, A.: Unlocking efficiency and scalability of reversible logic synthesis using conventional logic synthesis. In: Proceedings of the 53rd Annual Design Automation Conference (DAC), Article no. 149, Austin, Texas, 05–09 June 2016

    Google Scholar 

  31. Tarannikov, Y.: New constructions of resilient boolean functions with maximal nonlinearity. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 66–77. Springer, Heidelberg (2002). doi:10.1007/3-540-45473-X_6

    Chapter  Google Scholar 

  32. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: Proceedings of DAC, pp. 270–275 (2009)

    Google Scholar 

  33. Wille, R., Keszöcze, O., Drechsler, R.: Determining the minimal number of lines for large reversible circuits. In: Proceedings of DATE, pp. 1–4 (2011)

    Google Scholar 

  34. Wille, R., Drechsler, R., Osewold, C., Garcia-Ortiz, A.: Automatic design of low-power encoders using reversible circuit synthesis. In: Proceedings of DATE, pp. 1036–1041 (2012). doi:10.1109/DATE.2012.6176648

  35. Zheng, Y., Huang, C.: A novel toffoli network synthesis algorithm for reversible logic. In: Proceedings of ASP-DAC, pp. 739–744 (2009)

    Google Scholar 

  36. Wille, R., Chattopadhyay, A., Drechsler, R.: From reversible logic to quantum circuits: logic design for an emerging technology. In: Proceedings of International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS), pp. 268–274 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goutam Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Paul, G., Chattopadhyay, A., Chandak, C. (2017). Designing Parity Preserving Reversible Circuits. In: Phillips, I., Rahaman, H. (eds) Reversible Computation. RC 2017. Lecture Notes in Computer Science(), vol 10301. Springer, Cham. https://doi.org/10.1007/978-3-319-59936-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59936-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59935-9

  • Online ISBN: 978-3-319-59936-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics