Skip to main content

Improving Synthesis of Reversible Circuits: Exploiting Redundancies in Paths and Nodes of QMDDs

  • Conference paper
  • First Online:
Reversible Computation (RC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10301))

Included in the following conference series:

Abstract

In recent years, reversible circuits have become an established emerging technology through their variety of applications. Since these circuits employ a completely different structure from conventional circuitry, dedicated functional synthesis algorithms have been proposed. Although scalability has been achieved by using approaches based on decision diagrams, the resulting circuits employ a significant complexity measured in terms of quantum cost. In this paper, we aim for a reduction of this complexity. To this end, we review QMDD-based synthesis. Based on that, we propose optimizations that allow for a substantial reduction of the quantum costs by jointly considering paths and nodes in the decision diagram that employ a certain redundancy. In fact, in our experimental evaluation, we observe substantial improvements of up to three orders of magnitudes in terms of runtime and up to six orders of magnitudes (a factor of one million) in terms of quantum cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A path to the currently considered node can only traverse the first or the fourth edge of other nodes, because they already establish the identity structure.

  2. 2.

    We utilized the methods available at RevKit [14] for logic minimization.

References

  1. Amarù, L.G., Gaillardon, P., Wille, R., Micheli, G.D.: Exploiting inherent characteristics of reversible circuits for faster combinational equivalence checking. In: Design, Automation and Test in Europe, pp. 175–180 (2016)

    Google Scholar 

  2. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans. CAD Integr. Circ. Syst. 32(6), 818–830 (2013)

    Google Scholar 

  3. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact multiple control Toffoli network synthesis with SAT techniques. IEEE Trans. CAD 28(5), 703–715 (2009)

    Article  Google Scholar 

  5. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  6. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic synthesis. In: Design Automation Conference, pp. 318–323 (2003)

    Google Scholar 

  7. Miller, D.M., Thornton, M.A.: QMDD: a decision diagram structure for reversible and quantum circuits. In: International Symposium on Multi-Valued Logic, p. 6 (2006)

    Google Scholar 

  8. Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for multiple-control Toffolli gates. In: International Symposium on Multi-Valued Logic, pp. 288–293 (2011)

    Google Scholar 

  9. Mishchenko, A., Perkowski, M.: Fast heuristic minimization of exclusive-sums-of-products. In: International Workshop on Applications of the Reed-Muller Expansion in Circuit Design, pp. 242–250 (2001)

    Google Scholar 

  10. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  11. Niemann, P., Wille, R., Miller, D.M., Thornton, M.A., Drechsler, R.: QMDDs: efficient quantum function representation and manipulation. IEEE Trans. CAD 35(1), 86–99 (2016)

    Article  Google Scholar 

  12. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Reversible logic circuit synthesis. In: International Conference on CAD, pp. 353–360 (2002)

    Google Scholar 

  13. Soeken, M., Dueck, G.W., Miller, D.M.: A fast symbolic transformation based algorithm for reversible logic synthesis. In: Devitt, S., Lanese, I. (eds.) RC 2016. LNCS, vol. 9720, pp. 307–321. Springer, Cham (2016). doi:10.1007/978-3-319-40578-0_22

    Chapter  Google Scholar 

  14. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: a toolkit for reversible circuit design. In: Workshop on Reversible Computation, pp. 69–72 (2010). RevKit is available at http://www.revkit.org

  15. Soeken, M., Tague, L., Dueck, G.W., Drechsler, R.: Ancilla-free synthesis of large reversible functions using binary decision diagrams. J. Symb. Comput. 73, 1–26 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of reversible circuits with minimal lines for large functions. In: ASP Design Automation Conference, pp. 85–92 (2012)

    Google Scholar 

  17. Somenzi, F.: CUDD: CU decision diagram package release 3.0. 0. (2015)

    Google Scholar 

  18. Wille, R., Drechsler, R., Osewold, C., Ortiz, A.G.: Automatic design of low-power encoders using reversible circuit synthesis. In: Design, Automation and Test in Europe, pp. 1036–1041 (2012)

    Google Scholar 

  19. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online resource for reversible functions and reversible circuits. In: International Symposium on Multi-Valued Logic, pp. 220–225 (2008). RevLib is available at http://www.revlib.org

  20. Wille, R., Keszocze, O., Hillmich, S., Walter, M., Ortiz, A.G.: Synthesis of approximate coders for on-chip interconnects using reversible logic. In: Design, Automation and Test in Europe (2016)

    Google Scholar 

  21. Zulehner, A., Wille, R.: Taking one-to-one mappings for granted: Advanced logic design of encoder circuits. In: Design, Automation and Test in Europe (2017)

    Google Scholar 

Download references

Acknowledgements

This work has partially been supported by the European Union through the COST Action IC1405.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alwin Zulehner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zulehner, A., Wille, R. (2017). Improving Synthesis of Reversible Circuits: Exploiting Redundancies in Paths and Nodes of QMDDs. In: Phillips, I., Rahaman, H. (eds) Reversible Computation. RC 2017. Lecture Notes in Computer Science(), vol 10301. Springer, Cham. https://doi.org/10.1007/978-3-319-59936-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59936-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59935-9

  • Online ISBN: 978-3-319-59936-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics