Skip to main content

Exact Global Reordering for Nearest Neighbor Quantum Circuits Using A\(^{*}\)

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10301))

Abstract

Since for certain realizations of quantum circuits only adjacent qubits may interact, qubits have to be frequently swapped – leading to a significant overhead. Therefore, optimizations such as exact global reordering have been proposed, where qubits are reordered such that the overall number of swaps is minimal. However, to guarantee minimality all n! possible permutations of qubits have to be considered in the worst case – which becomes intractable for larger circuits. In this work, we tackle the complexity of exact global reordering using an A* search algorithm. The sophisticated heuristics for the search algorithm proposed in this paper allow for solving the problem in a much more scalable fashion. In fact, experimental evaluations show that the proposed approach is capable of determining the best order of the qubits for circuits with up to 25 qubits, whereas the recent state-of-the-art already reaches its limits with circuits composed of 10 qubits.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Symposium on the Theory of Computing, pp. 212–219 (1996)

    Google Scholar 

  4. Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest neighbor architectures. Quantum Inform. Process. 10(3), 355–377 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Khan, M.H.: Cost reduction in nearest neighbour based synthesis of quantum Boolean circuits. Eng. Lett. 16(1), 1–5 (2008)

    Google Scholar 

  6. Hirata, Y., Nakanishi, M., Yamashita, S., Nakashima, Y.: An efficient method to convert arbitrary quantum circuits to ones on a linear nearest neighbor architecture. In: Conference on Quantum, Nano and Micro Technologies, pp. 26–33 (2009)

    Google Scholar 

  7. Shafaei, A., Saeedi, M., Pedram, M.: Optimization of quantum circuits for interaction distance in linear nearest neighbor architectures. In: Design Automation Conference, pp. 41–46 (2013)

    Google Scholar 

  8. Wille, R., Quetschlich, N., Inoue, Y., Yasuda, N., Minato, S.: Using \(\pi \)DDs for nearest neighbor optimization of quantum circuits. In: Devitt, S., Lanese, I. (eds.) RC 2016. LNCS, vol. 9720, pp. 181–196. Springer, Cham (2016). doi:10.1007/978-3-319-40578-0_14

    Chapter  Google Scholar 

  9. Wille, R., Keszocze, O., Walter, M., Rohrs, P., Chattopadhyay, A., Drechsler, R.: Look-ahead schemes for nearest neighbor optimization of 1d and 2d quantum circuits. In: ASP Design Automation Conference, pp. 292–297 (2016)

    Google Scholar 

  10. Wille, R., Lye, A., Drechsler, R.: Optimal SWAP gate insertion for nearest neighbor quantum circuits. In: ASP Design Automation Conference, pp. 489–494 (2014)

    Google Scholar 

  11. Wille, R., Lye, A., Drechsler, R.: Exact reordering of circuit lines for nearest neighbor quantum architectures. IEEE Trans. CAD 33(12), 1818–1831 (2014)

    Article  Google Scholar 

  12. Fowler, A.G., Devitt, S.J., Hollenberg, L.C.L.: Implementation of Shor’s algorithm on a linear nearest neighbour qubit array. Quantum Inform. Comput. 4, 237–245 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Meter, R.V., Oskin, M.: Architectural implications of quantum computing technologies. J. Emerg. Technol. Comput. Syst. 2(1), 31–63 (2006)

    Article  Google Scholar 

  14. Ross, M., Oskin, M.: Quantum computing. Commun. ACM 51(7), 12–13 (2008)

    Article  Google Scholar 

  15. Amini, J.M., Uys, H., Wesenberg, J.H., Seidelin, S., Britton, J., Bollinger, J.J., Leibfried, D., Ospelkaus, C., VanDevender, A.P., Wineland, D.J.: Toward scalable ion traps for quantum information processing. New J. Phys. 12(3), 033031 (2010)

    Article  Google Scholar 

  16. Kumph, M., Brownnutt, M., Blatt, R.: Two-dimensional arrays of radio-frequency ion traps with addressable interactions. New J. Phys. 13(7), 073043 (2011)

    Article  Google Scholar 

  17. Nickerson, N.H., Li, Y., Benjamin, S.C.: Topological quantum computing with a very noisy network and local error rates approaching one percent. Nat. Commun. 4, 1756 (2013)

    Article  Google Scholar 

  18. Devitt, S.J., Fowler, A.G., Stephens, A.M., Greentree, A.D., Hollenberg, L.C.L., Munro, W.J., Nemoto, K.: Architectural design for a topological cluster state quantum computer. New J. Phys. 11(8), 083032 (2009)

    Article  Google Scholar 

  19. Yao, N.Y., Gong, Z.X., Laumann, C.R., Bennett, S.D., Duan, L.M., Lukin, M.D., Jiang, L., Gorshkov, A.V.: Quantum logic between remote quantum registers. Phys. Rev. A 87, 022306 (2013)

    Article  Google Scholar 

  20. Herrera-Martí, D.A., Fowler, A.G., Jennings, D., Rudolph, T.: Photonic implementation for the topological cluster-state quantum computer. Phys. Rev. A 82, 032332 (2010)

    Article  Google Scholar 

  21. Jones, N.C., Van Meter, R., Fowler, A.G., McMahon, P.L., Kim, J., Ladd, T.D., Yamamoto, Y.: Layered architecture for quantum computing. Phys. Rev. X 2, 031007 (2012)

    Google Scholar 

  22. Ohliger, M., Eisert, J.: Efficient measurement-based quantum computing with continuous-variable systems. Phys. Rev. A 85, 062318 (2012)

    Article  Google Scholar 

  23. DiVincenzo, D.P., Solgun, F.: Multi-qubit parity measurement in circuit quantum electrodynamics. New J. Phys. 15(7), 075001 (2013)

    Article  Google Scholar 

  24. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online resource for reversible functions and reversible circuits. In: International Symposium on Multi-Valued Logic, pp. 220–225 (2008). RevLib is available at http://www.revlib.org

Download references

Acknowledgements

This work has partially been supported by the European Union through the COST Action IC1405.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alwin Zulehner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zulehner, A., Gasser, S., Wille, R. (2017). Exact Global Reordering for Nearest Neighbor Quantum Circuits Using A\(^{*}\) . In: Phillips, I., Rahaman, H. (eds) Reversible Computation. RC 2017. Lecture Notes in Computer Science(), vol 10301. Springer, Cham. https://doi.org/10.1007/978-3-319-59936-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59936-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59935-9

  • Online ISBN: 978-3-319-59936-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics