Skip to main content

The Three-Dimensional Vestibulo-Ocular Reflex During Prolonged Microgravity

  • Chapter
  • First Online:
Book cover Vestibulo-Oculomotor Research in Space

Part of the book series: SpringerBriefs in Space Life Sciences ((BRIEFSSLS))

  • 302 Accesses

Abstract

Given the influence of gravity as a reference for spatial orientation, the following questions arise for the microgravity scenario:

  • How does the vestibular system adapt to the absence in space, and to the reintroduction after landing, of the gravity vector?

  • Is the vestibule-oculomotor response simply modified by an amount equivalent to the otolith-mediated contribution?

  • Or does it adapt with a systematic latency or time constant to some other level?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Chapter 2: The Role of the Otoliths

  • Clarke AH, Engelhorn A, Scherer H (1996) Ocular counter-rolling in response to asymmetric radial acceleration. Acta Otolaryngol 116:652–656

    Article  CAS  PubMed  Google Scholar 

  • Clarke AH, Grigull J, Mueller R, Scherer H (2000) The three-dimensional vestibulo-ocular reflex during prolonged microgravity. Exp Brain Res 134(3):322–334

    Google Scholar 

Chapter 3: 3D VOR

  • André-Deshays C, Israel I, Charade O, Berthoz A, Popov K, Lippschitz M (1993) Gaze control and spatial memory in weightlessness. J Vestib Res 3:331–344

    PubMed  Google Scholar 

  • Baloh RW, Demer J (1991) Gravity and the vertical vestibulo-ocular reflex. Exp Brain Res 83:427–433

    Article  CAS  PubMed  Google Scholar 

  • Barr CC, Schultheis LW, Robinson DA (1976) Voluntary, non-visual control of the human vestibular-ocular reflex. Acta Otolaryngol (Stockh) 81:365–375

    Article  CAS  Google Scholar 

  • Benson AJ, Viéville T (1986) European vestibular experiments on the Spacelab-1 mission. 6. Yaw axis vestibulo-ocular reflex. Exp Brain Res 64:279–283

    CAS  PubMed  Google Scholar 

  • Bles W, de Graaf B (1991) Ocular rotation and perception of the horizontal under static tilt conditions in patients without labyrinthine function. Acta Otolaryngol (Stockh) 111:456–462

    Article  CAS  Google Scholar 

  • Clarke AH, Teiwes W, Scherer H (1993a) Vestibulo-oculomotor testing during the course of a spaceflight mission. Clin Inv 71:740–748

    CAS  Google Scholar 

  • Clarke AH, Teiwes W, Scherer H (1993b) Evaluation of the three-dimensional VOR in weightlessness. J Vestib Res 3(3):207–218

    CAS  PubMed  Google Scholar 

  • Clarke AH, Engelhorn A, Hamann C, Schönfeld U (1999) Measuring the otolith-ocular response by means of unilateral radial acceleration. Ann NY Acad Sci 871:387–391

    Google Scholar 

  • Clément G, Lathan CE (1991) Effect of static tilt about the roll axis on horizontal and vertical optokinetic nystagmus and after-nystagmus. Exp Brain Res 84:335–341

    Article  PubMed  Google Scholar 

  • Clément G, Viéville T, Lestienne F, Berthoz A (1986) Modifications of gain asymmetry and beating field of vertical optokinetic nystagmus in microgravity. Neurosci Lett 63:271–274

    Article  PubMed  Google Scholar 

  • Clément G, Wood SJ, Lathan CE, Peterka RJ, Reschke MF (1999) Effects of body orientation and rotation axis on pitch visual-vestibular interaction. J Vestib Res 9:1–11

    Google Scholar 

  • Cohen B, Kozlovskaya I, Raphan T, Solomon D, Helwig D, Cohen N, Sirota M, Yakushin S (1992) Vestibulo-ocular reflex of rhesus monkeys after spaceflight. J Appl Physiol 73:121S–131S

    CAS  PubMed  Google Scholar 

  • Collewijn H, van der Steen J, Ferman L, Jansen TC (1985) Human ocular counterroll: assessment of static and dynamic properties from scleral coil recordings. Exp Brain Res 59:185–196

    Article  CAS  PubMed  Google Scholar 

  • Correia MJ, Perachio AA, Dickman JD, Kozlovskaya IB, Sirota MG, Yakushin SB, Beloozerova IN (1992) Changes in monkey horizontal semicircular canal afferent responses after spaceflight. J Appl Physiol 73:112S–120S

    CAS  PubMed  Google Scholar 

  • Dai M, Cohen B, Raphan T, McGarvie L, Kozlovskaya I (1994) Effect of spaceflight on ocular counterrolling and the spatial orientation of the vestibular system. Exp Brain Res 102:45–56

    Article  CAS  PubMed  Google Scholar 

  • Glasauer S, Reschke M, Berthoz A, Michaud L, Hubner W (1993) The effect of spaceflight on gaze control strategy. In: Proc 5th Eur symp life sci res in space. ESA-SP 366:339–344

    Google Scholar 

  • Groen E, De Graaf B, Bles W, Bos JE (1996) Ocular torsion before and after 1 hour centrifugation. Brain Res Bull 40:331–333

    Article  CAS  PubMed  Google Scholar 

  • Igarashi M, Takahasi T, KuboT et al (1978) Effect of macular ablation on vertical optokinetic nystagmus. J Otorhinolaryngol Relat Spec 40:312–318

    Google Scholar 

  • Jáuregui-Renaud K, Faldon M, Clarke A, Bronstein AM, Gresty MA (1996) Skew deviation of the eyes in normal human subjects induced by semicircular canal stimulation. Neurosci Lett 205:135–137

    Article  PubMed  Google Scholar 

  • Kasai T, Zee DS (1978) Eye-head co-ordination in labyrinth defective patients. Brain Res 144:123–141

    Article  CAS  PubMed  Google Scholar 

  • Kornilova LN, Bodo G, Kaspransky RR (1987) Sensory interaction in weightlessness. Physiologist 30:85–89

    Google Scholar 

  • Lichtenberg BK, Young LR, Arrott AP (1993) Human ocular counterrolling induced by varying linear acceleration. Exp Brain Res 48:127–136

    Google Scholar 

  • Manzey D (1998) Mental performance during short-term and long-term spaceflight. Brain Res Bull 28(215):221

    Google Scholar 

  • Morrow MJ, Sharpe JA (1993) The effects of head and trunk position on torsional vestibular and optokinetic eye movements in humans. Exp Brain Res 95:144–150

    Article  CAS  PubMed  Google Scholar 

  • Paige GD, Seidman SH (1999) Characteristics of the VOR in response to linear acceleration. Ann N Y Acad Sci 871:123–135

    Article  CAS  PubMed  Google Scholar 

  • Skipper JJ, Barnes GR (1989) Eye movements induced by linear acceleration are modified by visualisation of imaginary targets. Acta Otolaryngol Suppl (Stockh) 468:289–294

    Article  CAS  Google Scholar 

  • Thornton WE, Uri JJ, Moore TP, Pool SL (1989) Studies of the horizontal vestibulo-ocular reflex in spaceflight. Arch Otolaryngol Head Neck Surg 15:943–949

    Article  Google Scholar 

  • Tomlinson RD, Schwarz DWF (1980) Analysis of human vestibulo-ocular reflex during active head movements. Acta Otolaryngol (Stockh) 89:184–190

    Article  Google Scholar 

  • Viéville T, Clément G, Lestienne F, Berthoz A (1986) Adaptive modifications of the optokinetic and vestibulo-ocular reflexes in microgravity. In: Zee DS, Keller EL (eds) Adaptive processes in visual and oculomotor systems. Pergamon Press, Oxford, pp 111–120

    Google Scholar 

  • Wall C, Black FO (1984) Intersubject variability in VOR responses to 0.005–1.0 Hz sinusoidal rotations. Acta Otolaryngol Suppl (Stockh) 406:194–198

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Clarke, A.H. (2017). The Three-Dimensional Vestibulo-Ocular Reflex During Prolonged Microgravity. In: Vestibulo-Oculomotor Research in Space. SpringerBriefs in Space Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-59933-5_3

Download citation

Publish with us

Policies and ethics