Skip to main content

Practical Reasoning About Complex Activities

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10349))

Abstract

In this paper, we present an argument-based mechanism to generate hypotheses about belief-desire-intentions on dynamic and complex activities of a software agent. We propose to use a composed structure called activity as unit for agent deliberation analysis, maintaining actions, goals and observations of the world always situated into a context. Activity transformation produces changes in the knowledge base activity structure as well in the agent’s mental states. For example, in car driving as a changing activity, experienced and novice drivers have a different mental attitudes defining distinct deliberation processes with the same observations of the world. Using a framework for understanding activities in social sciences, we endow a software agent with the ability of deliberate, drawing conclusion about current and past events dealing with activity transformations. An argument-based deliberation is proposed which progressively reason about activity segments in a bottom-up manner. Activities are captured as extended logic programs and hypotheses are built using an answer-set programming approach. We present algorithms and an early-stage implementation of our argument-based deliberation process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Not only human activity but activity of any subject.

  2. 2.

    A general perspective about argumentation theory is presented in [4].

  3. 3.

    Semantic in terms of a semantic system [23]. A semantic system relates a set F of logical formulae to a set M of formal models, each representing a conceivable state of the world in enough detail to determine when a given formula represents a true assertion in that state of the world.

  4. 4.

    Some actions and operations are based on a self-driving vehicle example in [22].

  5. 5.

    Please, note that in atom: \( speed>0kmh^{co} \) the symbol > does not belong to the underlying language, it is a semantic interpretation of a world observation.

  6. 6.

    Assuming that \( AF_{op} = \langle \mathcal {H}_{op}, Att_{op} \rangle \) is the resulting argumentation framework obtained from R and \(SEM(AF_{op}) = \{Ext_1, \dots , Ext_m \}, (m \geqslant 1)\) is the set of extensions suggested by an argumentation semantics SEM.

  7. 7.

    Similarly Definition 6, assuming that \( AF_{obj} = \langle \mathcal {H}_{obj}, Att_{obj} \rangle \) is the resulting argumentation framework obtained from \( R^{'}\) and \(SEM(AF_{obj}) = \{Ext_1, \dots , Ext_m \}, (m \geqslant 1)\) is the set of extensions suggested by an argumentation semantics SEM.

  8. 8.

    Sources and manual instructions of the tool can be download in: https://github.com/esteban-g/recursive_deliberation.

  9. 9.

    e.g. the so called, “potential desires” and “potential initial goals” in [1, 2].

  10. 10.

    In [1] Definition 4 it is state that “Note that each desire is a sub-desire of itself”.

  11. 11.

    In this paper we do not address automatization, this particular topic is being currently explored by the authors.

References

  1. Amgoud, L.: A formal framework for handling conflicting desires. In: Nielsen, T.D., Zhang, N.L. (eds.) ECSQARU 2003. LNCS, vol. 2711, pp. 552–563. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45062-7_45

    Chapter  Google Scholar 

  2. Amgoud, L., Kaci, S.: On the generation of bipolar goals in argumentation-based negotiation. In: Rahwan, I., Moraïtis, P., Reed, C. (eds.) ArgMAS 2004. LNCS, vol. 3366, pp. 192–207. Springer, Heidelberg (2005). doi:10.1007/978-3-540-32261-0_13

    Chapter  Google Scholar 

  3. Atkinson, K., Bench-Capon, T.: Practical reasoning as presumptive argumentation using action based alternating transition systems. Artif. Intell. 171(10), 855–874 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bench-Capon, T., Dunne, P., Bench-Capon, T., Dunne, P.E.: Argumentation in artificial intelligence. Artif. Intell. 171(10), 619–641 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caminada, M.W.A., Carnielli, W.A., Dunne, P.E.: Semi-stable semantics. J. Log. Comput. 22(5), 1207–1254 (2012). http://dx.doi.org/10.1093/logcom/exr033

    Article  MathSciNet  MATH  Google Scholar 

  6. Dix, J.: A classification theory of semantics of normal logic programs: I. Strong properties. Fundam. Inform. 22(3), 227–255 (1995)

    MathSciNet  MATH  Google Scholar 

  7. Dix, J.: A classification theory of semantics of normal logic programs: Ii. Weak properties. Fundam. Inform. 22(3), 257–288 (1995)

    MathSciNet  MATH  Google Scholar 

  8. Doyle, J.: Rationality and its roles in reasoning. Comput. Intell. 8(2), 376–409 (1992)

    Article  Google Scholar 

  9. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dung, P.M., Thang, P.M.: Closure and consistency in logic-associated argumentation. J. Artif. Intell. Res. 49, 79–109 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9(3–4), 365–385 (1991)

    Article  MATH  Google Scholar 

  12. Gómez-Sebastià, I., Nieves, J.C.: Wizarg: visual argumentation framework solving wizard. In: Artificial Intelligence Research and Development Conference, pp. 249–258. IOS Press, Amsterdam (2010)

    Google Scholar 

  13. Guerrero, E., Nieves, J.C., Lindgren, H.: Semantic-based construction of arguments: an answer set programming approach. Int. J. Approximate Reasoning 64, 54–74 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jennings, N.R., Sycara, K., Wooldridge, M.: A roadmap of agent research and development. Auton. Agent. Multi-Agent Syst. 1(1), 7–38 (1998)

    Article  Google Scholar 

  15. Kaptelinin, V., Nardi, B.A.: Acting with Technology: Activity Theory and Interaction Design. Acting with Technology. MIT Press, Cambridge (2006)

    Google Scholar 

  16. Kautz, H.A.: A formal theory of plan recognition and its implementation. In: Allen, J.F., Kautz, H.A., Pelavin, R.N., Tenenberg, J.D. (eds.) Reasoning About Plans, Chap. 2, pp. 69–125. Morgan Kaufmann, San Francisco (1991)

    Chapter  Google Scholar 

  17. Kautz, H.A., Allen, J.F.: Generalized plan recognition. In: Proceedings of the 5th National Conference on Artificial Intelligence, 11–15 August 1986, Philadelphia, PA, Volume 1: Science, pp. 32–37 (1986)

    Google Scholar 

  18. Kuutti, K.: Activity theory as a potential framework for human-computer interaction research. In: Context and Consciousness: Activity Theory and Human-Computer Interaction, pp. 17–44 (1996)

    Google Scholar 

  19. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Logic (TOCL) 7(3), 499–562 (2006)

    Article  MathSciNet  Google Scholar 

  20. Leontyev, A.N.: Activity and consciousness. Personality, Moscow (1974)

    Google Scholar 

  21. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of artificial intelligence. Stanford University USA (1968)

    Google Scholar 

  22. Naranjo, J.E., Sotelo, M.A., Gonzalez, C., Garcia, R., De Pedro, T.: Using fuzzy logic in automated vehicle control. IEEE Intell. Syst. 22(1), 36–45 (2007)

    Article  Google Scholar 

  23. O’Donnell, M.J.: Introduction: logic and logic programming languages. In: Logic Programming, Chap. 1, vol. 5. Oxford University Press (1998)

    Google Scholar 

  24. Rahwan, I., Amgoud, L.: An argumentation based approach for practical reasoning. In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 347–354. ACM (2006)

    Google Scholar 

  25. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a bdi-architecture. KR 91, 473–484 (1991)

    MathSciNet  MATH  Google Scholar 

  26. Turaga, P., Chellappa, R., Subrahmanian, V.S., Udrea, O.: Machine recognition of human activities: a survey. IEEE Trans. Circ. Syst. Video Technol. 18(11), 1473–1488 (2008)

    Article  Google Scholar 

  27. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. J. ACM 38(3), 619–649 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wooldridge, M., Jennings, N.R.: Agent theories, architectures, and languages: a survey. In: Wooldridge, M.J., Jennings, N.R. (eds.) ATAL 1994. LNCS, vol. 890, pp. 1–39. Springer, Heidelberg (1995). doi:10.1007/3-540-58855-8_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Guerrero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Guerrero, E., Lindgren, H. (2017). Practical Reasoning About Complex Activities. In: Demazeau, Y., Davidsson, P., Bajo, J., Vale, Z. (eds) Advances in Practical Applications of Cyber-Physical Multi-Agent Systems: The PAAMS Collection. PAAMS 2017. Lecture Notes in Computer Science(), vol 10349. Springer, Cham. https://doi.org/10.1007/978-3-319-59930-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59930-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59929-8

  • Online ISBN: 978-3-319-59930-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics