Skip to main content

Hormonal Systems

  • Chapter
  • First Online:

Part of the book series: Updates in Hypertension and Cardiovascular Protection ((UHCP))

Abstract

Hormonal systems are largely involved in blood pressure regulation and water and salt hemostasis. Importantly, they are also involved in development and progression of cardiovascular and renal diseases. Here, we discuss recent findings about the impact of renin-angiotensin, aldosterone, vasopressin, and natriuretic peptide systems on blood pressure regulation and development of hypertension.

This is a preview of subscription content, log in via an institution.

References

  1. Weir MR, Dzau VJ (1999) The renin-angiotensin-aldosterone system: a specific target for hypertension management. Am J Hypertens 12(12 Pt 3):205S–213S

    Article  CAS  PubMed  Google Scholar 

  2. Danser AH, Derkx FH, Schalekamp MA et al (1998) Determinants of interindividual variation of renin and prorenin concentrations: evidence for a sexual dimorphism of (pro)renin levels in humans. J Hypertens 16(6):853–862

    Article  CAS  PubMed  Google Scholar 

  3. Nguyen G, Delarue F, Burcklé C et al (2002) Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 109(11):1417–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schefe JH, Menk M, Reinemund J et al (2006) A novel signal transduction cascade involving direct physical interaction of the renin/prorenin receptor with the transcription factor promyelocytic zinc finger protein. Circ Res 99(12):1355–1366

    Article  CAS  PubMed  Google Scholar 

  5. Funke-Kaiser H, Zollmann FS, Schefe JH, Unger T (2010) Signal transduction of the (pro)renin receptor as a novel therapeutic target for preventing end-organ damage. Hypertens Res 33(2):98–104

    Article  CAS  PubMed  Google Scholar 

  6. Schefe JH, Unger T, Funke-Kaiser H (2008) PLZF and the (pro)renin receptor. J Mol Med 86(6):623–627

    Article  CAS  PubMed  Google Scholar 

  7. Krop M, Lu X, Danser AHJ, Meima ME (2013) The (pro)renin receptor. A decade of research: what have we learned? Pflugers Arch 465(1):87–97

    Article  CAS  PubMed  Google Scholar 

  8. Nasjletti A, Masson GM (1972) Studies on angiotensinogen formation in a liver perfusion system. Circ Res 31(9 Suppl 2):187–120

    Google Scholar 

  9. Skeggs LT, Marsh WH, Kahn JR, Shumway NP (1954) The existence of two forms of hypertension. J Exp Med 99(3):275–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Unger T (2002) The role of the renin-angiotensin system in the development of cardiovascular disease. Am J Cardiol 89(2A):3A–9A; discussion 10A

    Google Scholar 

  11. Oparil S, Tregear GW, Koerner T et al (1971) Mechanism of pulmonary conversion of angiotensin I to angiotensin II in the dog. Circ Res 29(6):682–690

    Article  CAS  PubMed  Google Scholar 

  12. Mogi M, Iwai M, Horiuchi M (2009) New insights into the regulation of angiotensin receptors. Curr Opin Nephrol Hypertens 18(2):138–143

    Article  CAS  PubMed  Google Scholar 

  13. Touyz RM, Schiffrin EL (2000) Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev 52(4):639–672

    CAS  PubMed  Google Scholar 

  14. Braun-Menendez E, Fasciolo JC, Leloir LF, Muñoz JM (1940) The substance causing renal hypertension. J Physiol Lond 98(3):283–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burns KD, Li N (2003) The role of angiotensin II-stimulated renal tubular transport in hypertension. Curr Hypertens Rep 5(2):165–171

    Article  PubMed  Google Scholar 

  16. Li H, Weatherford ET, Davis DR et al (2011) Renal proximal tubule angiotensin AT1A receptors regulate blood pressure. Am J Physiol Regul Integr Comp Physiol 301(4):R1067–R1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mamenko M, Zaika O, Prieto MC et al (2013) Chronic angiotensin II infusion drives extensive aldosterone-independent epithelial Na+ channel activation. Hypertension 62(6):1111–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shricker K, Holmer S, Krämer BK et al (1997) The role of angiotensin II in the feedback control of renin gene expression. Pflugers Arch 434(2):166–172

    Article  CAS  PubMed  Google Scholar 

  19. De Gasparo M, Catt KJ, Inagami T et al (2000) International union of pharmacology XXIII. The angiotensin II receptors. Pharmacol Rev 52(3):415–472

    PubMed  Google Scholar 

  20. Goldblatt H, Lynch J, Hanzal RF, Summerville WW (1934) Studies on experimental hypertension: I. The production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med 59(3):347–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hansson L, Lindholm LH, Niskanen L et al (1999) Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial. Lancet 353(9153):611–616

    Article  CAS  PubMed  Google Scholar 

  22. Hansson L, Lindholm LH, Ekbom T et al (1999) Randomised trial of old and new antihypertensive drugs in elderly patients: cardiovascular mortality and morbidity the Swedish Trial in Old Patients with Hypertension-2 study. Lancet 354(9192):1751–1756

    Article  CAS  PubMed  Google Scholar 

  23. Yusuf S, Sleight P, Pogue J et al (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342(3):145–153

    Article  CAS  PubMed  Google Scholar 

  24. Dahlöf B, Devereux RB, Kjeldsen SE et al (2002) Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 359(9311):995–1003

    Article  PubMed  Google Scholar 

  25. Julius S, Kjeldsen SE, Weber M et al (2004) Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: the VALUE randomised trial. Lancet 363(9426):2022–2031

    Article  CAS  PubMed  Google Scholar 

  26. Investigators ONTARGET, Yusuf S, Teo KK, Pogue J et al (2008) Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med 358(15):1547–1559

    Article  Google Scholar 

  27. Elliott WJ, Meyer PM (2007) Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet 369(9557):201–207

    Article  CAS  PubMed  Google Scholar 

  28. Stanton A, Jensen C, Nussberger J, O’Brien E (2003) Blood pressure lowering in essential hypertension with an oral renin inhibitor, aliskiren. Hypertension 42(6):1137–1143

    Article  CAS  PubMed  Google Scholar 

  29. Andersen K, Weinberger MH, Egan B et al (2008) Comparative efficacy and safety of aliskiren, an oral direct renin inhibitor, and ramipril in hypertension: a 6-month, randomized, double-blind trial. J Hypertens 26(3):589–599

    Article  CAS  PubMed  Google Scholar 

  30. Schmieder RE, Philipp T, Guerediaga J et al (2009) Long-term antihypertensive efficacy and safety of the oral direct renin inhibitor aliskiren: a 12-month randomized, double-blind comparator trial with hydrochlorothiazide. Circulation 119(3):417–425

    Article  CAS  PubMed  Google Scholar 

  31. Dietz R, Dechend R, Yu C-M et al (2008) Effects of the direct renin inhibitor aliskiren and atenolol alone or in combination in patients with hypertension. J Renin-Angiotensin-Aldosterone Syst 9(3):163–175

    Article  CAS  PubMed  Google Scholar 

  32. Parving H-H, Brenner BM, McMurray JJV et al (2009) Aliskiren trial in type 2 diabetes using cardio-renal endpoints (ALTITUDE): rationale and study design. Nephrol Dial Transplant 24(5):1663–1671

    Article  CAS  PubMed  Google Scholar 

  33. Dzau VJ, Sasamura H, Hein L (1993) Heterogeneity of angiotensin synthetic pathways and receptor subtypes: physiological and pharmacological implications. J Hypertens Suppl 11(3):S13–S18

    Article  CAS  PubMed  Google Scholar 

  34. Paul M, Poyan Mehr A, Kreutz R (2006) Physiology of local renin-angiotensin systems. Physiol Rev 86(3):747–803

    Article  CAS  PubMed  Google Scholar 

  35. Unger T, Steckelings UM, dos Santos R (eds) (2015) The protective arm of the renin angiotensin system—functional aspects and therapeutic implications, 1st edn. Academic Press, Elsevier

    Google Scholar 

  36. Paulis L, Rajkovicova R, Simko F (2015) New developments in the pharmacological treatment of hypertension: dead-end or a glimmer at the horizon? Curr Hypertens Rep 17(6):557

    Article  PubMed  CAS  Google Scholar 

  37. Gohlke P, Pees C, Unger T (1998) AT2 receptor stimulation increases aortic cyclic GMP in SHRSP by a kinin-dependent mechanism. Hypertension 31(1 Pt 2):349–355

    Article  CAS  PubMed  Google Scholar 

  38. Fischer TA, Singh K, O’Hara DS et al (1998) Role of AT1 and AT2 receptors in regulation of MAPKs and MKP-1 by ANG II in adult cardiac myocytes. Am J Phys 275(3 Pt 2):H906–H916

    CAS  Google Scholar 

  39. Nouet S, Nahmias C (2000) Signal transduction from the angiotensin II AT2 receptor. Trends Endocrinol Metab;11(1):1–6

    Google Scholar 

  40. AbdAlla S, Lother H, Abdel-tawab AM, Quitterer U (2001) The angiotensin II AT2 receptor is an AT1 receptor antagonist. J Biol Chem 276(43):39721–39726

    Article  CAS  PubMed  Google Scholar 

  41. Wruck CJ, Funke-Kaiser H, Pufe T et al (2005) Regulation of transport of the angiotensin AT2 receptor by a novel membrane-associated Golgi protein. Arterioscler Thromb Vasc Biol 25(1):57–64

    CAS  PubMed  Google Scholar 

  42. Batenburg WW, Garrelds IM, Bernasconi CC et al (2004) Angiotensin II type 2 receptor-mediated vasodilation in human coronary microarteries. Circulation 109(19):2296–2301

    Article  CAS  PubMed  Google Scholar 

  43. Lucius R, Gallinat S, Rosenstiel P et al (1998) The angiotensin II type 2 (AT2) receptor promotes axonal regeneration in the optic nerve of adult rats. J Exp Med 188(4):661–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rompe F, Artuc M, Hallberg A et al (2010) Direct angiotensin II type 2 receptor stimulation acts anti-inflammatory through epoxyeicosatrienoic acid and inhibition of nuclear factor kappaB. Hypertension 55(4):924–931

    Article  CAS  PubMed  Google Scholar 

  45. Stoll M, Steckelings UM, Paul M et al (1995) The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 95(2):651–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vincent J-M, Kwan YW, Chan SL et al (2005) Constrictor and dilator effects of angiotensin II on cerebral arterioles. Stroke 36(12):2691–2695

    Article  CAS  PubMed  Google Scholar 

  47. Wan Y, Wallinder C, Plouffe B et al (2004) Design, synthesis, and biological evaluation of the first selective nonpeptide AT2 receptor agonist. J Med Chem 47(24):5995–6008

    Article  CAS  PubMed  Google Scholar 

  48. Kaschina E, Grzesiak A, Li J et al (2008) Angiotensin II type 2 receptor stimulation: a novel option of therapeutic interference with the renin-angiotensin system in myocardial infarction? Circulation 118(24):2523–2532

    Article  CAS  PubMed  Google Scholar 

  49. Lauer D, Slavic S, Sommerfeld M et al (2014) Angiotensin type 2 receptor stimulation ameliorates left ventricular fibrosis and dysfunction via regulation of tissue inhibitor of matrix metalloproteinase 1/matrix metalloproteinase 9 axis and transforming growth factor β1 in the rat heart. Hypertension 63(3):e60–e67

    Article  CAS  PubMed  Google Scholar 

  50. Paulis L, Becker STR, Lucht K et al (2012) Direct angiotensin II type 2 receptor stimulation in Nω-nitro-L-arginine-methyl ester-induced hypertension: the effect on pulse wave velocity and aortic remodeling. Hypertension 59(2):485–492

    Article  CAS  PubMed  Google Scholar 

  51. Rehman A, Leibowitz A, Yamamoto N et al (2012) Angiotensin type 2 receptor agonist compound 21 reduces vascular injury and myocardial fibrosis in stroke-prone spontaneously hypertensive rats. Hypertension 59(2):291–299

    Article  CAS  PubMed  Google Scholar 

  52. Hrenák J, Arendášová K, Rajkovičová R et al (2013) Protective effect of captopril, olmesartan, melatonin and compound 21 on doxorubicin-induced nephrotoxicity in rats. Physiol Res 62(Suppl 1):S181–S189

    PubMed  Google Scholar 

  53. Matavelli LC, Huang J, Siragy HM (2011) Angiotensin AT2 receptor stimulation inhibits early renal inflammation in renovascular hypertension. Hypertension 57(2):308–313

    Article  CAS  PubMed  Google Scholar 

  54. Iwanami J, Mogi M, Tsukuda K et al (2014) Possible synergistic effect of direct angiotensin II type 2 receptor stimulation by compound 21 with memantine on prevention of cognitive decline in type 2 diabetic mice. Eur J Pharmacol 724:9–15

    Article  CAS  PubMed  Google Scholar 

  55. Namsolleck P, Boato F, Schwengel K et al (2013) AT2-receptor stimulation enhances axonal plasticity after spinal cord injury by upregulating BDNF expression. Neurobiol Dis 51:177–191

    Article  CAS  PubMed  Google Scholar 

  56. Valero-Esquitino V, Lucht K, Namsolleck P et al (2015) Direct angiotensin AT2-receptor stimulation attenuates T-cell and microglia activation and prevents demyelination in experimental autoimmune encephalomyelitis in mice. Clin Sci (Lond) 128:95–109

    Article  CAS  Google Scholar 

  57. Zaman MA, Oparil S, Calhoun DA (2002) Drugs targeting the renin-angiotensin-aldosterone system. Nat Rev Drug Discov 1(8):621–636

    Article  CAS  PubMed  Google Scholar 

  58. Chai SY, Fernando R, Peck G, Ye S-Y, Mendelsohn FA, Jenkins TA et al (2004) The angiotensin IV/AT4 receptor. Cell Mol Life Sci 61(21):2728–2737

    Article  CAS  PubMed  Google Scholar 

  59. Yang R, Smolders I, Dupont AG (2011) Blood pressure and renal hemodynamic effects of angiotensin fragments. Hypertens Res 34(6):674–683

    Article  CAS  PubMed  Google Scholar 

  60. Park YA, Choi CH, Do IG et al (2014) Dual targeting of angiotensin receptors (AGTR1 and AGTR2) in epithelial ovarian carcinoma. Gynecol Oncol 135(1):108–117

    Article  CAS  PubMed  Google Scholar 

  61. Park BM, Cha SA, Lee SH, Kim SH (2016) Angiotensin IV protects cardiac reperfusion injury by inhibiting apoptosis and inflammation via AT4R in rats. Peptides 79:66–74

    Article  CAS  PubMed  Google Scholar 

  62. Iwai M, Horiuchi M (2009) Devil and angel in the renin-angiotensin system: ACE-angiotensin II-AT1 receptor axis vs. ACE2-angiotensin-(1-7)-Mas receptor axis. Hypertens Res 32(7):533–536

    Article  CAS  PubMed  Google Scholar 

  63. Villela D, Leonhardt J, Patel N et al (2015) Angiotensin type 2 receptor (AT2R) and receptor Mas: a complex liaison. Clin Sci 128(4):227–234

    Article  CAS  PubMed  Google Scholar 

  64. Barroso LC, Silveira KD, Lima CX et al (2012) Renoprotective effects of AVE0991, a nonpeptide Mas receptor agonist, in experimental acute renal injury. Int J Hypertens 2012:808726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Silveira KD, Barroso LC, Vieira AT et al (2013) Beneficial effects of the activation of the angiotensin-(1-7) MAS receptor in a murine model of adriamycin-induced nephropathy. PLoS One 8(6):e66082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Singh Y, Singh K, Sharma PL (2013) Effect of combination of renin inhibitor and Mas-receptor agonist in DOCA-salt-induced hypertension in rats. Mol Cell Biochem 373(1–2):189–194

    Article  CAS  PubMed  Google Scholar 

  67. Rentzsch B, Todiras M, Iliescu R et al (2008) Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function. Hypertension 52(5):967–973

    Article  CAS  PubMed  Google Scholar 

  68. Zhong J, Basu R, Guo D et al (2010) Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction. Circulation 122(7):717–728, 18 p following 728

    Google Scholar 

  69. Haschke M, Schuster M, Poglitsch M, Loibner H, Salzberg M, Bruggisser M et al (2013) Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet 52(9):783–792

    Article  CAS  PubMed  Google Scholar 

  70. Corti R, Burnett JC, Rouleau JL et al (2001) Vasopeptidase inhibitors: a new therapeutic concept in cardiovascular disease? Circulation 104(15):1856–1862

    Article  CAS  PubMed  Google Scholar 

  71. Packer M, Califf RM, Konstam MA et al (2002) Comparison of omapatrilat and enalapril in patients with chronic heart failure: the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE). Circulation 106(8):920–926

    Article  CAS  PubMed  Google Scholar 

  72. Tabrizchi R (2001) Omapatrilat. Bristol-Myers Squibb. Curr Opin Investig Drugs 2(10):1414–1422

    CAS  PubMed  Google Scholar 

  73. Ruilope LM, Dukat A, Böhm M et al (2010) Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet 375(9722):1255–1266

    Article  CAS  PubMed  Google Scholar 

  74. Solomon SD, Zile M, Pieske B et al (2012) The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet 380(9851):1387–1395

    Article  CAS  PubMed  Google Scholar 

  75. Voors AA, Gori M, Liu LCY et al (2015) Renal effects of the angiotensin receptor neprilysin inhibitor LCZ696 in patients with heart failure and preserved ejection fraction. Eur J Heart Fail 17(5):510–517

    Article  CAS  PubMed  Google Scholar 

  76. McMurray JJV, Packer M, Desai AS et al (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371(11):993–1004

    Article  PubMed  CAS  Google Scholar 

  77. Gross F (1958) Renin and hypertension, physiological or pathological agents? Klin Wochenschr 36(15):693–706

    Article  CAS  PubMed  Google Scholar 

  78. Tait SAS, Tait JF, Coghlan JP (2004) The discovery, isolation and identification of aldosterone: reflections on emerging regulation and function. Mol Cell Endocrinol 217(1–2):1–21

    Article  CAS  PubMed  Google Scholar 

  79. Fuller PJ (2015) Novel interactions of the mineralocorticoid receptor. Mol Cell Endocrinol 408:33–37

    Article  CAS  PubMed  Google Scholar 

  80. Mulrow PJ, Ganong WF (1961) Stimulation of aldosterone secretion by angiotensin. II. A preliminary report. Yale J Biol Med 33:386–395

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Quinn SJ, Williams GH (1988) Regulation of aldosterone secretion. Annu Rev Physiol 50:409–426

    Article  CAS  PubMed  Google Scholar 

  82. Oelkers W, Brown JJ, Fraser R et al (1974) Sensitization of the adrenal cortex to angiotensin II in sodium-deplete man. Circ Res 34(1):69–77

    Article  CAS  PubMed  Google Scholar 

  83. Connell JMC, Davies E (2005) The new biology of aldosterone. J Endocrinol 186(1):1–20

    Article  CAS  PubMed  Google Scholar 

  84. Spät A, Hunyady L (2004) Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol Rev 84(2):489–539

    Article  PubMed  Google Scholar 

  85. Ehrhart-Bornstein M, Lamounier-Zepter V, Schraven A et al (2003) Human adipocytes secrete mineralocorticoid-releasing factors. Proc Natl Acad Sci U S A 100(24):14211–14216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kucharz EJ (2007) Michał Lityński--a forgotten author of the first description on primary hyperaldosteronism. Pol Arch Med Wewn 117(1–2):57–58

    PubMed  Google Scholar 

  87. Conn JW, Louis LH (1956) Primary aldosteronism, a new clinical entity. Ann Intern Med 44(1):1–15

    Article  CAS  PubMed  Google Scholar 

  88. Rossi GP, Bisogni V, European Society of Hypertension Working Group on Endocrine Hypertension (2016) A useful tool to improve the case detection rate of primary aldosteronism: the aldosterone-renin ratio (ARR)-App. J Hypertens 34(5):1019–1021

    Article  CAS  PubMed  Google Scholar 

  89. Rossi GP, Bernini G, Caliumi C et al (2006) A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients. J Am Coll Cardiol 48(11):2293–2300

    Article  CAS  PubMed  Google Scholar 

  90. Weber KT (2001) Aldosterone in congestive heart failure. N Engl J Med 345(23):1689–1697

    Article  CAS  PubMed  Google Scholar 

  91. Tomaschitz A, Pilz S, Ritz E et al (2010) Aldosterone and arterial hypertension. Nat Rev Endocrinol 6(2):83–93

    Article  CAS  PubMed  Google Scholar 

  92. Genest J, Lemieux G, Davignon A et al (1956) Human arterial hypertension: a state of mild chronic hyperaldosteronism? Science 123(3195):503–505

    Article  CAS  PubMed  Google Scholar 

  93. Vasan RS, Evans JC, Larson MG et al (2004) Serum aldosterone and the incidence of hypertension in nonhypertensive persons. N Engl J Med 351(1):33–41

    Article  CAS  PubMed  Google Scholar 

  94. Calhoun DA, Nishizaka MK, Zaman MA et al (2002) Hyperaldosteronism among black and white subjects with resistant hypertension. Hypertension 40(6):892–896

    Article  CAS  PubMed  Google Scholar 

  95. Lim PO, Macdonald TM, Holloway C et al (2002) Variation at the aldosterone synthase (CYP11B2) locus contributes to hypertension in subjects with a raised aldosterone-to-renin ratio. J Clin Endocrinol Metab 87(9):4398–4402

    Article  CAS  PubMed  Google Scholar 

  96. Arriza JL, Weinberger C, Cerelli G et al (1987) Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 237(4812):268–275

    Article  CAS  PubMed  Google Scholar 

  97. Grossmann C, Gekle M (2009) New aspects of rapid aldosterone signaling. Mol Cell Endocrinol 308(1–2):53–62

    Article  CAS  PubMed  Google Scholar 

  98. Arima S, Kohagura K, Xu H-L et al (2003) Nongenomic vascular action of aldosterone in the glomerular microcirculation. J Am Soc Nephrol 14(9):2255–2263

    Article  CAS  PubMed  Google Scholar 

  99. Briet M, Schiffrin EL (2013) Treatment of arterial remodeling in essential hypertension. Curr Hypertens Rep 15(1):3–9

    Article  CAS  PubMed  Google Scholar 

  100. Schrier RW, Masoumi A, Elhassan E (2010) Aldosterone: role in edematous disorders, hypertension, chronic renal failure, and metabolic syndrome. Clin J Am Soc Nephrol 5(6):1132–1140

    Article  CAS  PubMed  Google Scholar 

  101. Lemarié CA, Paradis P, Schiffrin EL (2008) New insights on signaling cascades induced by cross-talk between angiotensin II and aldosterone. J Mol Med 86(6):673–678

    Article  PubMed  CAS  Google Scholar 

  102. Gomez-Sanchez EP (1986) Intracerebroventricular infusion of aldosterone induces hypertension in rats. Endocrinology 118(2):819–823

    Article  CAS  PubMed  Google Scholar 

  103. Geerling JC, Loewy AD (2009) Aldosterone in the brain. Am J Physiol Renal Physiol 297(3):F559–F576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wolf RL, Mendlowitz M, Roboz J et al (1966) Treatment of hypertension with spironolactone. Double-blind study. JAMA 198(11):1143–1149

    Article  CAS  PubMed  Google Scholar 

  105. Douglas JG, Hollifield JW, Liddle GW (1974) Treatment of low-renin essential hypertension. Comparison of spironolactone and a hydrochlorothiazide-triamterene combination. JAMA 227(5):518–521

    Article  CAS  PubMed  Google Scholar 

  106. Hood SJ, Taylor KP, Ashby MJ, Brown MJ (2007) The spironolactone, amiloride, losartan, and thiazide (SALT) double-blind crossover trial in patients with low-renin hypertension and elevated aldosterone-renin ratio. Circulation 116(3):268–275

    Article  CAS  PubMed  Google Scholar 

  107. Nishizaka MK, Zaman MA, Calhoun DA (2003) Efficacy of low-dose spironolactone in subjects with resistant hypertension. Am J Hypertens 16(11 Pt 1):925–930

    Article  CAS  PubMed  Google Scholar 

  108. Chapman N, Dobson J, Wilson S et al (2007) Effect of spironolactone on blood pressure in subjects with resistant hypertension. Hypertension 49(4):839–845

    Article  CAS  PubMed  Google Scholar 

  109. Williams B, MacDonald TM, Morant S et al (2015) Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet 386(10008):2059–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Namsolleck P, Unger T (2014) Aldosterone synthase inhibitors in cardiovascular and renal diseases. Nephrol Dial Transplant 29(Suppl 1):i62–i68

    Article  CAS  PubMed  Google Scholar 

  111. Tamargo J, Solini A, Ruilope LM (2014) Comparison of agents that affect aldosterone action. Semin Nephrol 34(3):285–306

    Article  CAS  PubMed  Google Scholar 

  112. Mancia G, Fagard R, Narkiewicz K et al (2013) 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 34(28):2159–2219

    Article  PubMed  Google Scholar 

  113. Romero CA, Orias M, Weir MR (2015) Novel RAAS agonists and antagonists: clinical applications and controversies. Nat Rev Endocrinol 11(4):242–252

    Article  CAS  PubMed  Google Scholar 

  114. Bramlage P, Swift SL, Thoenes M et al (2016) Non-steroidal mineralocorticoid receptor antagonism for the treatment of cardiovascular and renal disease. Eur J Heart Fail 18(1):28–37

    Article  CAS  PubMed  Google Scholar 

  115. Pitt B, Kober L, Ponikowski P et al (2013) Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur Heart J 34(31):2453–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Azizi M, Amar L, Menard J (2013) Aldosterone synthase inhibition in humans. Nephrol Dial Transplant 28(1):36–43

    Article  CAS  PubMed  Google Scholar 

  117. Swaab DF, Nijveldt F, Pool CW (1975) Distribution of oxytocin and vasopressin in the rat supraoptic and paraventricular nucleus. J Endocrinol 67(3):461–462

    Article  CAS  PubMed  Google Scholar 

  118. Oliver G, Schäfer EA (1895) On the physiological action of extracts of pituitary body and certain other glandular organs: preliminary communication. J Physiol Lond 18(3):277–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Verney EB (1947) The antidiuretic hormone and the factors which determine its release. Proc R Soc Lond B Biol Sci 135(878):25–106

    Article  CAS  PubMed  Google Scholar 

  120. Finley JJ, Konstam MA, Udelson JE (2008) Arginine vasopressin antagonists for the treatment of heart failure and hyponatremia. Circulation 118(4):410–421

    Article  PubMed  Google Scholar 

  121. Bankir L, Bichet DG, Bouby N (2010) Vasopressin V2 receptors, ENaC, and sodium reabsorption: a risk factor for hypertension? Am J Physiol Renal Physiol 299(5):F917–F928

    Article  CAS  PubMed  Google Scholar 

  122. Nielsen S, Chou CL, Marples D et al (1995) Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A 92(4):1013–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yagil C, Ben-Ishay D, Yagil Y (1996) Disparate expression of the AVP gene in Sabra hypertension-prone and hypertension-resistant rats. Am J Phys 271(4 Pt 2):F806–F813

    CAS  Google Scholar 

  124. Share L, Crofton JT (1982) Contribution of vasopressin to hypertension. Hypertension 4(5 Pt 2):III85–III92

    CAS  PubMed  Google Scholar 

  125. Zhang X, Hense HW, Riegger GA, Schunkert H (1999) Association of arginine vasopressin and arterial blood pressure in a population-based sample. J Hypertens 17(3):319–324

    Article  CAS  PubMed  Google Scholar 

  126. Burrell LM, Phillips PA, Risvanis J et al (1995) Attenuation of genetic hypertension after short-term vasopressin V1A receptor antagonism. Hypertension 26(5):828–834

    Article  CAS  PubMed  Google Scholar 

  127. Burrell LM, Risvanis J, Dean RG et al (2013) Age-dependent regulation of renal vasopressin V(1A) and V2 receptors in rats with genetic hypertension: implications for the treatment of hypertension. J Am Soc Hypertens 7(1):3–13

    Article  CAS  PubMed  Google Scholar 

  128. Loichot C, Cazaubon C, Grima M et al (2000) Vasopressin does not effect hypertension caused by long-term nitric oxide inhibition. Hypertension 35(2):602–608

    Article  CAS  PubMed  Google Scholar 

  129. Walker BR, Haynes J, Wang HL, Voelkel NF (1989) Vasopressin-induced pulmonary vasodilation in rats. Am J Phys 257(2 Pt 2):H415–H422

    CAS  Google Scholar 

  130. Evora PR, Pearson PJ, Schaff HV (1993) Arginine vasopressin induces endothelium-dependent vasodilatation of the pulmonary artery. V1-receptor-mediated production of nitric oxide. Chest 103(4):1241–1245

    Article  CAS  PubMed  Google Scholar 

  131. Suzuki Y, Satoh S, Oyama H et al (1993) Regional differences in the vasodilator response to vasopressin in canine cerebral arteries in vivo. Stroke 24(7):1049–1053. discussion 1053–4

    Article  CAS  PubMed  Google Scholar 

  132. Rudichenko VM, Beierwaltes WH (1995) Arginine vasopressin-induced renal vasodilation mediated by nitric oxide. J Vasc Res 32(2):100–105

    Article  CAS  PubMed  Google Scholar 

  133. Holmes CL, Landry DW, Granton JT (2003) Science review: vasopressin and the cardiovascular system part 1—receptor physiology. Crit Care 7(6):427–434

    Article  PubMed  PubMed Central  Google Scholar 

  134. García-Villalón AL, Garcia JL, Fernández N et al (1996) Regional differences in the arterial response to vasopressin: role of endothelial nitric oxide. Br J Pharmacol 118(7):1848–1854

    Article  PubMed  PubMed Central  Google Scholar 

  135. Thibonnier M, Conarty DM, Preston JA et al (1998) Molecular pharmacology of human vasopressin receptors. Adv Exp Med Biol 449:251–276

    Article  CAS  PubMed  Google Scholar 

  136. Zenteno-Savin T, Sada-Ovalle I, Ceballos G, Rubio R (2000) Effects of arginine vasopressin in the heart are mediated by specific intravascular endothelial receptors. Eur J Pharmacol 410(1):15–23

    Article  CAS  PubMed  Google Scholar 

  137. Boarder MR, Weisman GA, Turner JT, Wilkinson GF (1995) G protein-coupled P2 purinoceptors: from molecular biology to functional responses. Trends Pharmacol Sci 16(4):133–139

    Article  CAS  PubMed  Google Scholar 

  138. Noguera I, Medina P, Segarra G et al (1997) Potentiation by vasopressin of adrenergic vasoconstriction in the rat isolated mesenteric artery. Br J Pharmacol 122(3):431–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Emori T, Hirata Y, Ohta K et al (1991) Cellular mechanism of endothelin-1 release by angiotensin and vasopressin. Hypertension 18(2):165–170

    Article  CAS  PubMed  Google Scholar 

  140. Caramelo C, Okada K, Tsai P et al (1990) Interaction of arginine vasopressin and angiotensin II on Ca2+ in vascular smooth muscle cells. Kidney Int 38(1):47–54

    Article  CAS  PubMed  Google Scholar 

  141. Iversen BM, Arendshorst WJ (1998) ANG II and vasopressin stimulate calcium entry in dispersed smooth muscle cells of preglomerular arterioles. Am J Phys 274(3 Pt 2):F498–F508

    CAS  Google Scholar 

  142. Bussien JP, Waeber B, Nussberger J et al (1984) Does vasopressin sustain blood pressure of normally hydrated healthy volunteers? Am J Phys 246(1 Pt 2):H143–H147

    CAS  Google Scholar 

  143. Waeber B, Nussberger J, Hofbauer KG et al (1986) Clinical studies with a vascular vasopressin antagonist. J Cardiovasc Pharmacol 8(Suppl 7):S111–S116

    Article  CAS  PubMed  Google Scholar 

  144. Papadoliopoulou-Diamandopoulou N, Papagalanis N, Gavras I, Gavras H (1987) Vasopressin in end-stage renal disease: relationship to salt, catecholamines and renin activity. Clin Exp Hypertens A 9(7):1197–1208

    CAS  PubMed  Google Scholar 

  145. Thibonnier M, Kilani A, Rahman M et al (1999) Effects of the nonpeptide V(1) vasopressin receptor antagonist SR49059 in hypertensive patients. Hypertension 34(6):1293–1300

    Article  CAS  PubMed  Google Scholar 

  146. Okada H, Suzuki H, Kanno Y, Saruta T (1995) Effect of nonpeptide vasopressin receptor antagonists on developing, and established DOCA-salt hypertension in rats. Clin Exp Hypertens 17(3):469–483

    Article  CAS  PubMed  Google Scholar 

  147. Okada H, Suzuki H, Kanno Y et al (1994) Chronic and selective vasopressin blockade in spontaneously hypertensive rats. Am J Phys 267(6 Pt 2):R1467–R1471

    CAS  Google Scholar 

  148. Lang RE, Rascher W, Unger T, Ganten D (1981) Reduced content of vasopressin in the brain of spontaneously hypertensive as compared to normotensive rats. Neurosci Lett 23(2):199–202

    Article  CAS  PubMed  Google Scholar 

  149. Rascher W, Lang RE, Unger T et al (1982) Vasopressin in brain of spontaneously hypertensive rats. Am J Phys 242(4):H496–H499

    CAS  Google Scholar 

  150. Han SY, Bouwer GT, Seymour AJ et al (2015) Induction of hypertension blunts baroreflex inhibition of vasopressin neurons in the rat. Eur J Neurosci 42(9):2690–2698

    Article  PubMed  Google Scholar 

  151. Kim Y-B, Kim YS, Kim WB et al (2013) GABAergic excitation of vasopressin neurons: possible mechanism underlying sodium-dependent hypertension. Circ Res 113(12):1296–1307

    Article  CAS  PubMed  Google Scholar 

  152. Crofton JT, Share L, Shade RE et al (1979) The importance of vasopressin in the development and maintenance of DOC-salt hypertension in the rat. Hypertension 1(1):31–38

    Article  CAS  PubMed  Google Scholar 

  153. DiPette DJ, Gavras I, North WG et al (1982) Vasopressin in salt-induced hypertension of experimental renal insufficiency. Hypertension 4(3 Pt 2):125–130

    CAS  PubMed  Google Scholar 

  154. Hinojosa C, Shade RE, Haywood JR (1986) Plasma vasopressin concentration in high sodium renal hypertension. J Hypertens 4(5):529–534

    Article  CAS  PubMed  Google Scholar 

  155. Rascher W, Lang RE, Taubitz M et al (1981) Vasopressin-induced increase in total peripheral resistance in deoxycorticosterone acetate hypertensive rats is buffered by the baroreceptor reflex. Clin Sci 61(Suppl 7):153s–156s

    Google Scholar 

  156. De Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28(1):89–94

    Article  PubMed  Google Scholar 

  157. Flynn TG, de Bold ML, de Bold AJ (1983) The amino acid sequence of an atrial peptide with potent diuretic and natriuretic properties. Biochem Biophys Res Commun 117(3):859–865

    Article  CAS  PubMed  Google Scholar 

  158. Sudoh T, Kangawa K, Minamino N, Matsuo H (1988) A new natriuretic peptide in porcine brain. Nature 332(6159):78–81

    Article  CAS  PubMed  Google Scholar 

  159. Sudoh T, Minamino N, Kangawa K, Matsuo H (1990) C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun 168(2):863–870

    Article  CAS  PubMed  Google Scholar 

  160. Lang RE, Thölken H, Ganten D et al (1985) Atrial natriuretic factor—a circulating hormone stimulated by volume loading. Nature 314(6008):264–266

    Article  CAS  PubMed  Google Scholar 

  161. Volpe M (2014) Natriuretic peptides and cardio-renal disease. Int J Cardiol 176(3):630–639

    Article  PubMed  Google Scholar 

  162. Volpe M, Carnovali M, Mastromarino V (2016) The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin Sci 130(2):57–77

    Article  CAS  PubMed  Google Scholar 

  163. Wu F, Yan W, Pan J et al (2002) Processing of pro-atrial natriuretic peptide by corin in cardiac myocytes. J Biol Chem 277(19):16900–16905

    Article  CAS  PubMed  Google Scholar 

  164. Semenov AG, Tamm NN, Seferian KR et al (2010) Processing of pro-B-type natriuretic peptide: furin and corin as candidate convertases. Clin Chem 56(7):1166–1176

    Article  PubMed  Google Scholar 

  165. Komatsu Y, Nakao K, Suga S et al (1991) C-type natriuretic peptide (CNP) in rats and humans. Endocrinology 129(2):1104–1106

    Article  CAS  PubMed  Google Scholar 

  166. Wu C, Wu F, Pan J et al (2003) Furin-mediated processing of Pro-C-type natriuretic peptide. J Biol Chem 278(28):25847–25852

    Article  CAS  PubMed  Google Scholar 

  167. Potter LR, Abbey-Hosch S, Dickey DM (2006) Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 27(1):47–72

    Article  CAS  PubMed  Google Scholar 

  168. Müller D, Schulze C, Baumeister H, Buck F, Richter D (1992) Rat insulin-degrading enzyme: cleavage pattern of the natriuretic peptide hormones ANP, BNP, and CNP revealed by HPLC and mass spectrometry. Biochemistry 31(45):11138–11143

    Article  PubMed  Google Scholar 

  169. Levin ER, Gardner DG, Samson WK (1998) Natriuretic peptides. N Engl J Med 339(5):321–328

    Article  CAS  PubMed  Google Scholar 

  170. Saito Y (2010) Roles of atrial natriuretic peptide and its therapeutic use. J Cardiol 56(3):262–270

    Article  PubMed  Google Scholar 

  171. Harris PJ, Thomas D, Morgan TO (1987) Atrial natriuretic peptide inhibits angiotensin-stimulated proximal tubular sodium and water reabsorption. Nature 326(6114):697–698

    Article  CAS  PubMed  Google Scholar 

  172. Rohmeiss P, Demmert G, Rettig R, Unger T (1989) Centrally administered atrial natriuretic factor inhibits central angiotensin-induced natriuresis. Brain Res 502(1):198–203

    Article  CAS  PubMed  Google Scholar 

  173. Unger T, Badoer E, Gareis C et al (1990) Atrial natriuretic peptide (ANP) as a neuropeptide: interaction with angiotensin II on volume control and renal sodium handling. Br J Clin Pharmacol 30(Suppl 1):83S–88S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Charles CJ, Espiner EA, Richards AM et al (1996) Comparative bioactivity of atrial, brain, and C-type natriuretic peptides in conscious sheep. Am J Phys 270(6 Pt 2):R1324–R1331

    CAS  Google Scholar 

  175. Franco-Saenz R, Somani P, Mulrow PJ (1992) Effect of atrial natriuretic peptide (8-33-Met ANP) in patients with hypertension. Am J Hypertens 5(5 Pt 1):266–275

    Article  CAS  PubMed  Google Scholar 

  176. Lazzeri C, Franchi F, Porciani C et al (1995) Systemic hemodynamics and renal function during brain natriuretic peptide infusion in patients with essential hypertension. Am J Hypertens 8(8):799–807

    Article  CAS  PubMed  Google Scholar 

  177. Cargill RI, Struthers AD, Lipworth BJ (1995) Comparative effects of atrial natriuretic peptide and brain natriuretic peptide on the aldosterone and pressor responses to angiotensin II in man. Clin Sci 88(1):81–86

    Article  CAS  PubMed  Google Scholar 

  178. Gupta DK, Wang TJ (2015) Natriuretic peptides and cardiometabolic health. Circ J 79(8):1647–1655

    Article  PubMed  PubMed Central  Google Scholar 

  179. Feng JA, Perry G, Mori T et al (2003) Pressure-independent enhancement of cardiac hypertrophy in atrial natriuretic peptide-deficient mice. Clin Exp Pharmacol Physiol 30(5–6):343–349

    Article  CAS  PubMed  Google Scholar 

  180. Knowles JW, Esposito G, Mao L et al (2001) Pressure-independent enhancement of cardiac hypertrophy in natriuretic peptide receptor A-deficient mice. J Clin Invest 107(8):975–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Barbee RW, Perry BD, Ré RN et al (1994) Hemodynamics in transgenic mice with overexpression of atrial natriuretic factor. Circ Res 74(4):747–751

    Article  CAS  PubMed  Google Scholar 

  182. Fujita S, Shimojo N, Terasaki F et al (2013) Atrial natriuretic peptide exerts protective action against angiotensin II-induced cardiac remodeling by attenuating inflammation via endothelin-1/endothelin receptor A cascade. Heart Vessel 28(5):646–657

    Article  Google Scholar 

  183. Pan Y, Zhu W, Ma J et al (2011) Therapeutic effects of continuous infusion of brain natriuretic peptides on postmyocardial infarction ventricular remodelling in rats. Arch Cardiovasc Dis 104(1):17–28

    Article  PubMed  Google Scholar 

  184. Obata H, Yanagawa B, Tanaka K et al (2007) CNP infusion attenuates cardiac dysfunction and inflammation in myocarditis. Biochem Biophys Res Commun 356(1):60–66

    Article  CAS  PubMed  Google Scholar 

  185. Kapoun AM, Liang F, O’Young G et al (2004) B-type natriuretic peptide exerts broad functional opposition to transforming growth factor-beta in primary human cardiac fibroblasts: fibrosis, myofibroblast conversion, proliferation, and inflammation. Circ Res 94(4):453–461

    Article  CAS  PubMed  Google Scholar 

  186. Soeki T, Kishimoto I, Okumura H et al (2005) C-type natriuretic peptide, a novel antifibrotic and antihypertrophic agent, prevents cardiac remodeling after myocardial infarction. J Am Coll Cardiol 45(4):608–616

    Article  CAS  PubMed  Google Scholar 

  187. McKie PM, Ichiki T, Burnett JC (2012) M-atrial natriuretic peptide: a novel antihypertensive protein therapy. Curr Hypertens Rep 14(1):62–69

    Article  CAS  PubMed  Google Scholar 

  188. McKie PM, Cataliotti A, Ichiki T et al (2014) M-atrial natriuretic peptide and nitroglycerin in a canine model of experimental acute hypertensive heart failure: differential actions of 2 cGMP activating therapeutics. J Am Heart Assoc 3(1):e000206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Burnett JC, McKie P, Heublein D et al (2015) MANP: a novel particulate guanylyl cyclase A receptor/cGMP activator for resistant hypertension: preliminary first in human clinical trial results. BMC Pharmacol Toxicol 16(Suppl 1):A3

    Article  PubMed Central  Google Scholar 

  190. Schweitz H, Vigne P, Moinier D et al (1992) A new member of the natriuretic peptide family is present in the venom of the green mamba (Dendroaspis angusticeps). J Biol Chem 267(20):13928–13932

    CAS  PubMed  Google Scholar 

  191. Von Lueder TG, Krum H (2015) New medical therapies for heart failure. Nat Rev Cardiol 12(12):730–740

    Article  CAS  Google Scholar 

  192. Tummala R, Bhadra R, Gupta A, Ghosh RK (2016) Combined neprilysin and RAS inhibition in cardiovascular diseases: a review of clinical studies. J Cardiovasc Pharmacol. doi:10.197/FJC.0000000000000402

    Google Scholar 

  193. Rouleau JL, Pfeffer MA, Stewart DJ et al (2000) Comparison of vasopeptidase inhibitor, omapatrilat, and lisinopril on exercise tolerance and morbidity in patients with heart failure: IMPRESS randomised trial. Lancet 356(9230):615–620

    Article  CAS  PubMed  Google Scholar 

  194. Gu J, Noe A, Chandra P et al (2010) Pharmacokinetics and pharmacodynamics of LCZ696, a novel dual-acting angiotensin receptor-neprilysin inhibitor (ARNi). J Clin Pharmacol 50(4):401–414

    Article  CAS  PubMed  Google Scholar 

  195. Kario K, Sun N, Chiang F-T et al (2014) Efficacy and safety of LCZ696, a first-in-class angiotensin receptor neprilysin inhibitor, in Asian patients with hypertension: a randomized, double-blind, placebo-controlled study. Hypertension 63(4):698–705

    Article  CAS  PubMed  Google Scholar 

  196. Jhund PS, Claggett B, Packer M et al (2014) Independence of the blood pressure lowering effect and efficacy of the angiotensin receptor neprilysin inhibitor, LCZ696, in patients with heart failure with preserved ejection fraction: an analysis of the PARAMOUNT trial. Eur J Heart Fail 16(6):671–677

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Unger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Foulquier, S., Paulis, L., Kaschina, E., Namsolleck, P., Unger, T. (2018). Hormonal Systems. In: Berbari, A., Mancia, G. (eds) Disorders of Blood Pressure Regulation. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-59918-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59918-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59917-5

  • Online ISBN: 978-3-319-59918-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics